Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36
= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36
= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36
= x² + y² + 36
b) Do x² ≥ 0 với mọi x ∈ R
y² ≥ 0 với mọi x ∈ R
Q = x² + y² + 36 ≥ 36 với mọi x ∈ R
Q nhỏ nhất khi x² + y² = 0
⇒ x = y = 0
Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
Câu 1:
-2x²y + xy + 1 = -2x²y + (xy + 1)
Vậy -2x²y + xy + 1 được viết thành tổng của hai đa thức: -2x²y và xy + 1
Câu 2:
x²y² + 2xy - 3 = x²y² + (2xy - 3)
Vậy x²y² + 2xy - 3 được viết thành tổng của hai đa thức: x²y² và 2xy - 3
Câu 3:
-2x²y + xy + 1 = (xy + 1) - 2x²y
Vậy -2x²y + xy + 1 được viết thành hiệu của hai đa thức: xy + 1 và 2x²y
Câu 4:
x²y² - 2xy + 3 = (x²y² + 3) - 2xy
Vậy x²y² - 2xy + 3 được viết thành hiệu của hai đa thức: x²y² + 3 và 2xy
trl mấy câu mik đăng nữa đk