Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
1, B = 308/1 + 307/2 + 306/3 + ... + 3/306 + 2/307 + 1/308
= ( 307/2 + 1 ) + ( 306/3 + 1 ) + ... + ( 3/306 + 1 ) + ( 2/307 + 1 ) + ( 1/308 + 1 ) + 1
= 309/2 + 309/3 + ... + 309/306 + 309/307 + 309/308 + 1
= 309 . ( 1/2 + 1/3 + ... + 1/306 + 1/307 + 1/308 + 1/309 )
= 309 . A
=> A/B = 1/309
Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728
Các số nguyên tố hơn 3 chia hết cho 12 thì dư 11 ; 7 ; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư
Này thành 2 nhóm : ( 5 ; 7 ) và ( 1 ; 11 ) thì với ba số bất kỳ đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên ( nguyên ý
dirichlet )
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11;7;5 hoặc 1; mà 5+7=11=12 chia hết cho 12 nên nếu chia cho 4 số dư này thành 2 nhóm là ( 5;7 ) và ( 1;11 )thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên .
Chúc bạn thi học kỳ 2 đc 10 điểm nhé♥
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
bù nốt cho bạn này nhé
số nguyên tố chia 12 dư 9=12k+9
mà 12k+9=3(4k+3)
từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)
mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)
vậy Không có số nguyên tố nào chia 12 dư 9