K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

b) cạnh góc vuông lớn của tam giac đó là: (49+7):2=28(cm)

cạnh góc vuông nhỏ của tam giác đó là: 49-28=21(cm)

cạnh huyền của tam giác đo slaf:

\(\sqrt{28^2+21^2}=\sqrt{784+441}=\sqrt{1225}=35\)

chu vi tam giác đo slaf:

35+21+28=84(cm)

9 tháng 6 2020

Câu 1.

Gọi DI là trung trực BC

Xét ΔBIDvà ΔCID:

IDchung

\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)

BD = CD(như trên)

⇒ΔBID = ΔCID (c.g.c )

\(\widehat{IBD}=\widehat{C}\)(2gtu)

\(\widehat{B}-\widehat{C}\) = 40

hay \(\widehat{B}-\widehat{IBD}\) = 40

\(\widehat{IBD}+\widehat{ABI}=B\)

\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)

10 tháng 3 2020

Câu 1 : Hai đường thẳng a và b vuông góc với nhau tạo thành .....một....... góc .........\(90^0\).........

Câu 2 : Hai đường thẳng cắt nhau tạo thành ...............cặp góc .............. ,chúng................. ( mk ko hiểu câu này)

Câu 3 : Có .....một.......... đường thẳng a' đi qua điểm O và vuông góc với đường thẳng a cho trước.

Câu 4 :  Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là .......đường trung trực....... .................của đoạn thẳng ấy.

học tốt

Bài 1 : Cho 2 điểm A và B nằm ngoài đường thẳng m. Qua A vẽ 50 đường thẳng trong đó có đường thằng đi qua B. Qua B vẽ 50 đường thẳng trong đó có đường thẳng đi qua A. Hỏi có ít nhất bao nhiêu giao điểm của đường thẳng m với các đường thẳng đã vẽ?Bài 2 : Cho 9 đường thẳng cắt nhau tại O tạo thành 1 số góc không có điểm chung. Chứng minh rằng trong các góc đó tồn tại một góc lớn...
Đọc tiếp

Bài 1 : Cho 2 điểm A và B nằm ngoài đường thẳng m. Qua A vẽ 50 đường thẳng trong đó có đường thằng đi qua B. Qua B vẽ 50 đường thẳng trong đó có đường thẳng đi qua A. Hỏi có ít nhất bao nhiêu giao điểm của đường thẳng m với các đường thẳng đã vẽ?

Bài 2 : Cho 9 đường thẳng cắt nhau tại O tạo thành 1 số góc không có điểm chung. Chứng minh rằng trong các góc đó tồn tại một góc lớn hơn hoặc bằng 20 độ và tồn tại một hóc nhỏ hơn hoặc bằng 20 độ.

Bài 3 : Qua điểm O nằm ngoài đường thẳng a vẽ một số đường thẳng không phải tất cả điều cắt a. Những đường cắt a được 78 tam giác chung đỉnh O. Chứng minh rằng trong các đường thẳng đã vẽ qua O cũng có 2 đường thẳng cắt nhau theo một góc nhỏ hơn 13 độ.

Dùng phương pháp phản chứng

0
19 tháng 1 2019

kẻ thêm me song song

rồi tự mò là song

6 tháng 2 2020

M Ở ĐÂU RA VẬY BẠN

8 tháng 3 2020

Điểm M lấy ở đâu?

8 tháng 3 2020

ĐỀ em xem lại đi nhé (bài 1)

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.c) So sánh các diện tích của 2 tam giác RPQ và RNQ.Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.Bài giải:a) Hai tam giác PMQ và PQR có:Chung đỉnh P.Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có...
Đọc tiếp

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.

b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.

c) So sánh các diện tích của 2 tam giác RPQ và RNQ.

Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.

Bài giải:

a) Hai tam giác PMQ và PQR có:

  • Chung đỉnh P.
  • Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có chung chiều cao xuất phát từ P.

Mặt khác do Q là trọng tâm của tam giác MNP suy ra MQ = 2RQ.

Từ đó suy ra: b) Tương tự câu a.

c) Hai tam giác RPQ và RNQ có chung đỉnh Q, hai cạnh NR và RP cùng nằm trên một đường thẳng nên chúng có chung đường cao từ Q. RN = RP do đó:

 

Bài tập 68 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho góc xOy, hai điểm A,B lần lượt nằm trên Ox và Oy.

a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A,B.

b) Nếu OA = OB thì có bao nhiêu điểm M thoả mãn yêu cầu ở câu a?

Bài giải:

a) Điểm M cách đều hai cạnh của góc xOy suy ra M nằm trên đường phân giác của góc đó.

Điểm M cách đều A và B suy ra M nằm trên đường trung trực của AB.

Vậy ta xác định được M chính là giao điểm của hai đường thẳng trên.

b) Nếu OA = OB thì đường trung trực của AB chính là phân giác góc xOy do khi đó tam giác OAB cân tại O, đường phân giác đồng thời là đường trung trực của cạnh AB.

Khi đó thì có vô số điểm M thoả mãn, tập hợp điểm M thoả mãn yêu cầu chính là đường phân giác của góc xOy.

Bài tập 69 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho hai đường thẳng phân biệt không song song, không vuông góc với nhau là a và b, điểm M không nằm trên hai đường này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và vẽ đường thẳng d vuông góc với b tại R, cắt a tại S.

Chứng minh rằng đường thẳng qua M vuông góc với SQ cũng đi qua giao điểm của a và b.

Bài giải: Vì a và b không song song nên chúng cắt nhau giả sử tại A.

Xét tam giác AQS có: QP ⊥ AS vì QP ⊥ a.

SR ⊥ AQ vì SR ⊥ b.

Ta có QP và RS cắt nhau tại M.

Vậy M là trực tâm của ΔAQS.

=> Đường thẳng đi qua M và vuông góc với QS tại H sẽ là đường cao thứ ba của ΔAQS.

Vậy MH phải đi qua đỉnh A của ΔAQS hay đường thẳng vuông góc với QS đi qua giao điểm của a và b (Điều phải chứng minh).

Bài tập 70 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho A, B là hai điểm phân biệt và d là đường trung trực của đoạn thẳng AB.

a) Ta ký hiệu PA là nửa mặt phẳng bờ là đường thẳng d có chứa điểm A (không kể d). Gọi N là một điểm của PA và M là giao điểm của đường thẳng NB và d. Hãy so sánh NB với NM + MA. Từ đó suy ra NA < NB.

b) Ta ký hiệu PB là nửa mặt phẳng bờ d có chứa B (không kể d). Gọi N’ là một điểm của PB. Chứng minh rằng N’B < N’A.

c) Gọi L là một điểm sao cho LA < LB. Hỏi điểm L nằm ở đâu?

Bài giải: a) Ta có M nằm trên đường trung trực của AB nên MA = MB.

N, M, B thẳng hàng nên NB = NM + MB

Mà MA = MB suy ra NB = NM + MA.

Xét tam giác NMA ta có: NM + MA > NA => NB > NA.

b) Tương tự câu a.

c) L phải nằm ở PA

0