Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : aaa = a . 111
= a . 37 . 3\(⋮\)37
Vậy aaa \(⋮\)7 (đpcm)
b) Ta có : 1ab1 - 1ba1 = (1000 + ab0 + 1) - (1000 + ba0 + 1)
= (1001 + 10.ab) - (1001 + 10.ba)
= 10.ab - 10.ba
= 10.(ab - ba)
= 10.[(10a + b) - (10b + a)]
= 10.[(10a - a) + (b - 10b)]
= 10.(9a - 9b)
= 10.9(a - b)
= 90.(a - b) \(⋮\)90
Vậy 1ab1 - 1ba1 \(⋮\)90 (đpcm)
c) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
Vậy ab + ba \(⋮\)11 (đpcm)
giả sử : \(a>b\) thì ta có : \(1ab1-1ba1=\left(a-b-1\right)\left(10-a+b\right)0\)
ta có : \(\left(a-b-1\right)+\left(10-a+b\right)=9\) \(\Rightarrow\left(a-b-1\right)\left(10-a+b\right)⋮9\)
\(\Rightarrow\left(a-b-1\right)\left(10-a+b\right)0⋮90\left(đpcm\right)\)
a)
Gọi số tự nhiên có 3 chữ số giống nhau là bbb (b khác 0; b< 10)
Ta có:
bbb = b . 111 = b . 37 .3
=> b chia hết cho 37
Vậy mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
b)
Ta có
1ab1 = 1000 + a .100 + b .10 + 1
1ba1 = 1000+ b .100 +a .10 +1
1ab1-1ba1 = 1000 + a .100 + b .10 + 1 - 1000 + b.100 + a .10 + 1
1ab1-1ba1 = 1001+a .100+ b.10 - 1001 + b .100 + a .10
1ab1 -1ba1 = a .100+ b.10 - b .100+ a.10
1ab1 -1ba1 = a.(100- 10) - b .( 100-10)
1ab1 - 1ba1 = a .90 - b .90
1ab1-1ba1 = 90(a-b)
=> 1ab1 -1ba1 chia hết cho 90
Vậy hiệu giữa số có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
1) a)
gọi 5 số chẵn liên tiếp lad 2k; 2k+2; 2k+4;2k+6;2k+8
2k+2k+2+2k+4+2k+6+2k+8
= 10k +20
=10(k+2)
vì 10\(⋮\)10 nên 10(k+20)\(⋮\)10
b) gọi 5 số lẻ liên tiếp lần lượt là 2k+1; 2k+3; 2k+5; 2k+7; 2k+9
2k+1+2k+3+2k+5+2k+7+2k+9
=10k+25
=10k +20+5
=10(k+2)+5
vậy...
Bai 2
Khong mat tinh tong quat, gia su a lon hon hoac bang b
1ab1 - 1ba1 = 1000 + 100a + 10b +1 - 1000 - 100b - 10a -1
=90 (a-b) chia het cho 9
a) aaa = 111.a = 37.3.a chia hết cho 37
b) 1ab1 - 1ba1 = 1001 + 10ab - 1001 - 10ba = 10ab - 10ba = 10( 10a + b ) - 10 ( 10 b + a ) = 90a - 90b = 90 ( a-b ) chia hết cho 90.
Ta có:
1ab1 = 1000 + 100.a + 10.b + 1
1ba1 = 1000 + 100.b + 10.a + 1
\(\Rightarrow\) 1ab1 - 1ba1 = ( 1000 + 100.a + 10.b + 1 ) - ( 1000 + 100.b + 10.a + 1)
= 1000 + 100.a + 10.b + 1 - 1000 - 100.b - 10.a - 1
= ( 1000 + 1 ) + 100.a + 10.b + (- 1000 - 1 ) -100.b - 10.a
= 1001 + 100.a + 10.b - 1001 - 100.b - 10.a
= 100.a + 10.b - 100.b - 10.a
= a(100 - 10 ) - b(100-10)
= a.90 - b.90
= 90.(a-b) chia hết cho 90
Vậy 1ab1 - 1ba1 chia hết cho 90
Ta có:
1ab1= 1000 + a.100 + b.10 + 1
1ba1= 1000 + b.100 + a.10 + 1
1ab1 - 1ba1=(1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)
=1000 + 100a + 10b + 1 - 1000 - 100b - 10a - 1
=(1000 - 1000) + (100a - 10a) + (100b - 10b) + (1 - 1)
=90a - 90b=90.(a - b) ⋮ 90
Vậy 1ab1 - 1ba1 ⋮ 90
a, aaa=111.a=37.3.a
Vậy suy ra aaa chia hết cho 37
b, 1ab1-1ba2=(1000+100a+10b+1)-(1000+100b+10a+2)=90a-90b-1
nên nó làm sao chia hết cho 90 dc