Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Câu 1:
a) n+4 chia hết cho n
suy ra 4 chia hết cho n(vì n chia hết cho n)
suy ra n thuộc Ư(4) {1;2;4}
Vậy n {1;2;4}
b) 3n+7 chia hết cho n
suy ra 7 chia hết cho n(vì 3n chia hết cho n)
suy ra n thuộc Ư(7) {1;7}
Vậy n {1;7}
c) 27-5n chia hết cho n
suy ra 27 chia hết cho n(vì 5n chia hết cho n)
suy ra n thuộc Ư(27) {1;3;9;27}
Vậy n {1;3;9;27}
d) n+6 chia hết cho n+2
suy ra (n+2)+4 chia hết cho n+2
suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)
suy ra n+2 thuộc Ư(4) {1;2;4}
n+2 bằng 1 (loại)
n+2 bằng 2 suy ra n bằng 0
n+2 bằng 4 suy ra n bằng 2
Vậy n {0;2}
e) 2n+3 chia hết cho n-2
suy ra 2(n-2)+7 chia hết cho n-2
suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)
suy ra n-2 thuộc Ư(7) {1;7}
n-2 bằng 1 suy ra n bằng 3
n-2 bằng 7 suy ra n bằng 9
Vậy n {3;9}
a: Vì 2n-5 chia hết cho n+1
và n+1 chia hết cho 2n-5
nên 2n-5=-n-1
=>3n=4
hay n=4/3
b: Vì 3n+2 chia hết cho n-2
và n-2 chia hết cho 3n+2
nên 3n+2=2-n
=>4n=0
hay n=0