Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos^2x\left(2sin^2x+cos^2x\right)=\left(1-sin^2x\right)\left(sin^2x+cos^2x+sin^2x\right)\)
\(=\left(1-sin^2x\right)\left(1+sin^2x\right)=1-sin^4x\)
a)
\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)
b)
\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)
\(=1-2\sin ^2x\cos ^2x\)
c)
\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)
\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)
\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)
d)
\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)
\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)
\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)
e)
\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)
\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)
\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)
\(=1+2\sin x\cos x\)
-------------
P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)
Lời giải:
a)
\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)
b)
\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)
\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)
c)
\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)
\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)
d)
\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)
\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)
e)
\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)
\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)
Ta có ddpcm.
\(A=sin^6x+sin^4x.cos^2x+2\left(sin^2x.cos^4x+sin^4x.cos^2x\right)+cos^4x\)
\(=sin^4x\left(sin^2x+cos^2x\right)+2sin^2x.cos^2x\left(sin^2x+cos^2x\right)+cos^4x\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x\)
\(=\left(sin^2x+cos^2x\right)^2=1\)
\(1-\frac{1}{4}sin^2x+cosx=1-\frac{1}{4}\left(1-cos^2x\right)+cosx\)
\(=\frac{3}{4}+\frac{1}{4}cos^2x+cosx=\frac{3}{4}+\frac{1}{4}\left(2cos^2\frac{x}{2}-1\right)^2+2cos^2\frac{x}{2}-1\)
\(=\frac{1}{4}\left(4cos^4\frac{x}{2}-4cos^2\frac{x}{2}+1\right)+2cos^2\frac{x}{2}-\frac{1}{4}\)
\(=cos^4\frac{x}{2}+cos^2\frac{x}{2}\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=\left(sin^2x-cos^2x\right)\cdot1\)\(=1-cos^2x-cos^2x=1-2cos^2x\)
ta có công thức nhân đôi:
2 cos2x - 1 = 1 - 2 sin2x
<=> 2 cos2x = 2 - 2sin2x
=> sin4x - cos4x = 1- 2cos2x = 1- 2 + 2sin2x = -1 + 2 sin2x
???
mình nghĩ là sai đề!
in4x - cos4x = 1- 2cos2x = -1 + 2 sin2x
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)