\(\dfrac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

câ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

nguyen van tuan

16 tháng 9 2017

Bài này là tớ đăg lên ! Nhưg hôm nay thầy tớ giải rồi! Tớ đăg lời giải lên đây cho mấy bạn tham khảo ạ! ko kiếm GP nhá!

Câu 1 :

Vì x > y \(\Rightarrow\) \(x-y>0\)

\(\Rightarrow x^2+y^2\ge2\sqrt{2}.\left(x-y\right)\)

\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)

\(xy=1\Rightarrow x^2+y^2+\left(\sqrt{2}\right)^2-2\sqrt{2}x+2\sqrt{2}y-2xy\ge0\)

\(\Leftrightarrow\left(x-y-2\sqrt{2}\right)^2\ge0\)

Đúng với mọi x; y

Câu 2:

\(a^3+b^3+ab\ge\dfrac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^3\right)+ab-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow a^2-ab+b^2+ab-\dfrac{1}{2}\ge0\) ( vì a+b = 1 )

\(\Leftrightarrow a^2+b^2-\dfrac{1}{2}\ge0\)

\(a+b=1\Rightarrow b=1-a\)

\(\Rightarrow a^2+\left(1-a\right)^2-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow a^2+1-2a+a^2-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow2a^2-2a+\dfrac{1}{2}\ge0\)

\(\Leftrightarrow4a^2-4a+1\ge0\)

\(\Leftrightarrow\left(2a-1\right)^2\ge0\)

Đúng với mọi a;b

Dấu "=" xảy ra khi

\(2a-1=0\Rightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

7 tháng 2 2017

đk: x\(x\ge2,y\ge-1999,z\ge2000\)

pt <-> 2VT=x+y+z

<-> (x-2-\(2\sqrt{x-2}\)+1)+(y+1999-\(2\sqrt{y+1999}\)+1)+(z-2000-\(2\sqrt{z-2000}\)+1)=0

<-> \(\left(\sqrt{x-2}-1\right)^2\)+\(\left(\sqrt{y+1999}-1\right)^2\)+\(\left(\sqrt{z-2000}-1\right)^2\)=0

<-> \(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y+1999}-1=0\\\sqrt{z-2000}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1998\\z=2001\end{cases}}}\)(tm)

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

10 tháng 7 2017

1) Đặt \(\dfrac{b\sqrt{a-1}+a\sqrt{b-1}}{ab}\) là A

\(\)\(A=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-1}}{b}\)

\(\left(\dfrac{\sqrt{a-1}}{a}\right)^2=\dfrac{a-1}{a^2}=\dfrac{1}{a}-\dfrac{1}{a^2}=\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)\)

\(\Rightarrow\)\(\dfrac{\sqrt{a-1}}{a}=\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\)

Tương tự: \(\dfrac{\sqrt{b-1}}{b}=\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\)

Áp dụng BĐT Cauchy, ta có:

\(\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\le\dfrac{\dfrac{1}{a}+\left(1-\dfrac{1}{a}\right)}{2}=\dfrac{1}{2}\)

Tương tự: \(\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\le\dfrac{1}{2}\)

Cộng vế theo vế của 2 BĐT vừa chứng minh, ta được:

\(A\le1\left(đpcm\right)\)

11 tháng 7 2017

Xét: \(a^2+\dfrac{2}{a^3}=\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{a^3}+\dfrac{1}{a^3}\left(1\right)\)

Áp dụng BĐT Cauchy cho 5 số dương trên, ta có: \(\left(1\right)\ge5\sqrt[5]{\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{a^3}.\dfrac{1}{a^3}}=5\sqrt[5]{\dfrac{1}{27}}=\dfrac{5\sqrt[5]{9}}{3}\left(đpcm\right)\)

Dấu ''='' xảy ra khi và chỉ khi \(\dfrac{1}{3}a^2=\dfrac{1}{a^3}\Leftrightarrow a=\sqrt[5]{3}\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c