K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Câu 1

X^3+Y3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2 -xy-yz-zx) =0. Nên chỉ có 2 TH

a) TH1: x+y+z = 0 --> x+y=-z; y+z=-x; z+x=-y (1):

Biến đổi P= (x+y)(y+z)(z+x)/xyz (2). Thay (1) vào (2) được P = -xyz/xyz = -1

b) TH2: x^2+y^2+z^2 -xy-yz-zx --> x=y=z. Thay vào biểu thức của P được P = (1+1)(1+1)(1+1)=8

Câu 3 

x^2+y^2 >= 2xy

y^2+z^2 >= 2yz

z^2+x^2>=2xz

Cộng 2 vế với vế cuae 3 BDT trên được 2(x^2+y^2+x^2)>=2(xy+yz+zx) --> x^2+y^2+x^2>= xy+yz+zx (1) Dấu = xảy ra khi x=y=z

Mặt khác A=(x+y+z)^2=x^2+y^2+x^2+2(xy+yz+zx)=9. Theo (1) A>=xy+yz+zx+2(xy+yz+zx) = 3(xy+yz+zx)

nên 9>=3(xy+yz+zx) --> 3>=xy+yz+zx. Vậy giá trị lớn nhất của P là 9. Khi đó x=y=z=1

Câu 3 : Chỉ là kẻ BD, CM ko thôi sao? thế thì M và D nằm đâu trên 2 cạnh AB và AC cũng đc? Như thế sẽ ko làm được bạn nhé
Câu 5 : 
\(2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2+2xy+2zx=36+2xy+2zx\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=36\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=36\)

\(\Leftrightarrow\left(x+y+z\right)^2=36-\left(x-y\right)^2-\left(x-z\right)^2\le36\)

\(\Leftrightarrow-6\le x+y+z\le6\)
_Minh ngụy_

22 tháng 11 2016

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

20 tháng 12 2016

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

23 tháng 4 2017

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

25 tháng 5 2018

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

11 tháng 2 2017

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk

22 tháng 12 2017

Với mọi x,y,z ta luôn có

(x-y)2+(y-z)2+(z-x)2\(\ge\)0

<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0

<=> x2+y2+z2-xy-yz-zx\(\ge\)0

<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0

<=> (x+y+z)2\(\ge\)3(xy+yz+zx)

<=> 9\(\ge\)3(xy+yz+zx)

<=> 3\(\ge\)xy+yz+zx = B

Dấu "=" xảy ra khi x=y=z=1

Vậy max B=3 <=> x=y=z=1

26 tháng 2 2019

đây mới là chuẩn nè

Câu 1.a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì...
Đọc tiếp

Câu 1.

a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1

Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định lúc đầu.

Câu 3. Cho ABC vuông cân tại A. Trên AB lấy điểm M, kẻ BD CM, BD cắt CA ở E. Chứng minh rằng:

a) BE . DE = AE . CE

b) BD . BE + AC . EC = BC^2

c) góc ADE = 45 độ

Câu 4. Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh căn 3 và góc BAD= 60 độ . Đường thẳng qua B và giao điểm O của hai cạnh đường chéo hình thoi ABCD vuông góc mặt phẳng (ABCD). Biết BB’ = căn 3 . Tính thể tích hình hộp chữ nhật.

Câu 5. Cho x,y,z là các số thực thỏa mãn 2(y^2+yz+z^2)+3x^2=36 . Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x+y+z

1

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)

\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

1
3 tháng 1 2017

trôi hết đề : Câu 7

\(\left(3-\sqrt{2}\right)\)

câu 8:

\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)

Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)