Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMND vuông tại M và ΔHND vuông tại H có
ND chung
\(\widehat{MND}=\widehat{HND}\)(ND là tia phân giác của \(\widehat{MNH}\))
Do đó: ΔMND=ΔHND(cạnh huyền-góc nhọn)
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
nếu bạn ko thấy ảnh thì zô thống kê hỏi đáp của mình là thấy bài này nhá . ( cậu tìm câu nào có câu này r ấn zô xem nha )
hoặc link bài của mình nè
https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/89947717_345887062999332_7304147707155709952_n.jpg?_nc_cat=110&_nc_sid=b96e70&_nc_ohc=Hj57duZ44dcAX91P2ra&_nc_ht=scontent-hkt1-1.xx&oh=7ea184f17776bd230198145c38f92aae&oe=5E95F1D5
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP
a) Do ND là đường phân giác của ∆MNP (gt)
⇒ ∠MND = ∠PND
⇒ ∠MND = ∠HND
Xét hai tam giác vuông: ∆MND và ∆HND có:
ND là cạnh chung
∠MND = ∠HND (cmt)
⇒ ∆MND = ∆HND (cạnh huyền - góc nhọn)
b) Do ∆MND = ∆HND (cmt)
⇒ MN = HN (hai cạnh tương ứng)
c) Do ∆MND = ∆HND (cmt)
⇒ MD = HD (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆DMK và ∆DHP có:
MD = HD (cmt)
∠MDK = ∠HDP (đối đỉnh)
⇒ ∆DMK = ∆DHP (cạnh góc vuông - góc nhọn kề)
⇒ MK = HP (hai cạnh tương ứng)
Lại có: MN = HN (cmt)
⇒ MK + MN = HP + HN
⇒ KN = PN
⇒ ∆NPK cân tại N
Do ∆MNP vuông tại M (gt)
⇒ PM ⊥ MN
⇒ PM ⊥ NK
⇒ PM là đường cao của ∆NPK
Lại có:
DH ⊥ NP (gt)
⇒ KH ⊥ NP
⇒ KH là đường cao thứ hai của ∆NPK
⇒ ND là đường cao thứ ba của ∆NPK
Mà ∆NPK cân tại N (cmt)
⇒ ND cũng là đường trung tuyến của ∆NPK
⇒ ND đi qua trung điểm của PK
Mà I là trung điểm của PK
⇒ N, D, I thẳng hàng