Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=> \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)
=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.
b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)
=> Để giá trị phân thức A = 0 thì x = 3
Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé
a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)
b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)
\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)
\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)
Bài 1 :
\(Q=x^2-2x+114\)
\(Q=x^2-2\cdot x\cdot1+1^2+113\)
\(Q=\left(x-1\right)^2+113\ge113\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Qmin = 113 khi và chỉ khi x = 1
Bài 2:
a) \(x^2+4x-5x-20\)
\(=x\left(x+4\right)-5\left(x+4\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
b) \(x^3+2x^2-9x-18\)
\(=x^2\left(x+2\right)-9\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-9\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
\(a.xz+yz-5\left(x+y\right)=\left(x+y\right)z-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
Học tốt
a, xz + yz - 5(x + y)
<=> z(x + y) - 5(x + y)
<=> (z - 5).(x + y)
b, x2 - 3xy + 2y2
<=> x2 - xy - 2xy + 2y2
<=> x(x - y) - 2y(x - y)
<=> (x - 2y).(x - y)
\(\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=10x^2+7x-12\)
\(b,\frac{x-4}{x-2}+\frac{5x-8}{x-2}=\frac{x-4+5x-8}{x-2}=\frac{6\left(x-2\right)}{x-2}=6\)
\(c,\frac{x-9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x-9}{\left(x+3\right)\left(x-3\right)}-\frac{3}{x\left(x+3\right)}\)
\(=\frac{x^2-9x}{x\left(x+3\right)\left(x-3\right)}-\frac{3x-9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-9x-3x+9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-6x+9}{x\left(x+3\right)\left(x-3\right)}\)
\(=\frac{x-3}{x\left(x+3\right)}\)
CÂU 1 :
a, ( 5x-4 ) ( 2x + 3 )
= 10x + 15x -8x -12
= 17x - 12
b, \(\frac{x-4}{x-2}\)+ \(\frac{5x-8}{x-2}\)
= \(\frac{x-4+5x-8}{x-2}\)
= \(\frac{6x-12}{x-2}\)
= \(\frac{6\left(x-2\right)}{x-2}\)
= 6
c, \(\frac{x-9}{x^2-9}\)- \(\frac{3}{x^2+3x}\)
= \(\frac{x-9}{\left(x-3\right)\left(x+3\right)}\)- \(\frac{3}{x\left(x+3\right)}\)
= \(\frac{\left(x-9\right).x}{x\left(x-3\right).\left(x+3\right)}\)- \(\frac{3.\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x}{x\left(x-3\right)\left(x+3\right)}\)- \(\frac{3x-9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x-3x+9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-12x+9}{x\left(x-3\right)\left(x+3\right)}\)
Bài 1 :
a) \(3x^2+4x-7\)
\(=3x^2-3x+7x-7\)
\(=3x\left(x-1\right)+7\left(x-1\right)\)
\(\left(x-1\right)\left(3x+7\right)\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Bài 2 :
a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)
\(A=\frac{-4x-7}{x+2}\)
c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )
\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)
\(a,2x^3-8x^2+8x\)
\(=2x^3-4x^2-4x^2+8x\)
\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)
\(=2x\left(x-2\right)-4x\left(x-2\right)\)
\(=\left(2x-4x\right)\left(x-2\right)\)
\(b,2x^2-3x-5=2x^2-5x+2x-5\)
\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)
\(=\left(x+1\right)\left(2x-5\right)\)
\(c,x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(x^2-9\right)\left(y-x\right)\)
Câu 1:
a: \(=a^2+2ab+b^2-a^2-2ab-b^2=0\)
b: \(=x^3+27-54-x^3=-27\)
Câu 4:
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Leftrightarrow3x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;1\right\}\)
Nhìn cái câu hỏi mà nản giải thật sự ấy. Làm số trước nha:vv
Câu 3:
a) \(2x^3y-18xy^3=2xy\left(x^2-9y^2\right)=2xy\left(x-3y\right)\left(x+3y\right)\)
b) \(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-4\right)\left(x^2-9\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)Câu 4:
a)\(x^3-16x=0\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy....
b. \(\left(x-2\right)^2+\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x-3\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy...
Câu 2: ĐKXĐ: \(x\ne0;y\ne0;x\ne y\)
Ta có: \(A=\dfrac{14x^3y\left(x-y\right)^2}{21x^2y^2\left(y-x\right)^3}=\dfrac{14x^3y\left(y-x\right)^2}{21x^2y^2\left(y-x\right)^3}=\dfrac{2x}{3y\left(y-x\right)}\)
Câu 2
ĐKXĐ : ....
\(=\dfrac{2x\left(y-x\right)^2}{3y\left(y-x\right)^3}=\dfrac{2x}{3y\left(y-x\right)}\)
Câu 3 :
\(a,=2xy\left(x^{2-y^2}\right)=2xy\left(x+y\right)\left(x-y\right)\)
\(b,=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
Câu 4
a/ \(\Leftrightarrow x\left(x^2-4\right)=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x-2\right)\left(x-2+x-3\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)