
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Tính số đo các góc BOD, DOE, COE
Dựa vào các số đo đã cho:
- ∠BOC = 42°
- ∠AOD = 97°
- ∠AOE = 56°
Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A
Tính từng góc:
- ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
- ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
→ Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41° - ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°
- b) Tia OD có phải là phân giác của góc COE không?
- Phân giác là tia chia góc thành hai phần bằng nhau.
- ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
- Vì 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE

a)tam.... giác ABM và tam giác ACM có:
AB=AC(GT)
cạnh AM chung
AM=BM(M là trung điểm)
=>tg ABM=TG ACM(C-C-C)
b)Xét tg AMC và tg EMB có
BME=AMC(Đối đỉnh)
BM=MC(M là trung điểm)
ME=MA(GT)
=>tg AMC=tg EMB(C-G-C)
=> MBE=ACM(2 góc tương ứng)
Mà 2 góc nằm đúng vị trí sole trong
=> AC//BE
c)

a) Xét ΔABM và ΔDCM, có:
MB = MC (gt)
∠AMB = ∠DCM (đối đỉnh)
MA = MD (gt)
Vậy ΔABM = ΔDCM (c-g-c)
b) Từ ΔABM = ΔDCM (chứng minh câu a)
Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)
Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong
Vậy AB // DC
c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)
Có: MB = MC (gt)
∠AMB = ∠DMC (đối đỉnh)
Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)
Suy ra: ME = MF (hai cạnh tương ứng)
Vậy M là trung điểm của EF
a) ΔABMΔABMvà ΔECMΔECMcó: BM = MC (M là trung điểm của BC)
ˆAMB=ˆCMEAMB^=CME^(đối đỉnh)
AM = ME (gt)
=> ΔABMΔABM= ΔECMΔECM(c. g. c)
b) Ta có ΔABMΔABM= ΔECMΔECM(cm câu a)
=> AB = EC (hai cạnh tương ứng) (đpcm)
c/ Dựng MI ́ là tia đối của MI
Ta có: ΔAMB=ΔECMΔAMB=ΔECMcâu a
⇒ˆBAM=ˆMEC⇒BAM^=MEC^góc t.ứng
Trong tam giác AMI có: ˆIAM+ˆAMI+ˆMIA=1800