Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a, Xét }\Delta AIC\text{ và }\Delta EIB\text{ có:}\)
\(\left\{{}\begin{matrix}IA=IE\\\widehat{AIC}=\widehat{BIE}\\IB=IC\end{matrix}\right.\)
\(\Rightarrow\Delta AIC\text{ }=\Delta EIB\text{ }\left(c-g-c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AC=BE\\\widehat{IAC}=\widehat{IEB}\end{matrix}\right.\)
\(\text{b, }\widehat{IAC}=\widehat{IEB}\left(\text{Theo câu a}\right)\)
\(\text{c, Sai đề}\)
a,b: Xét tứ giác ABEC có
I là trung điểm chung của AE và BC
nên ABEC là hình bình hành
=>AC=BE và AC//BE
c: Xét tứ giác AMEK có
AM//EK
AM=EK
DO đó; AMEK là hình bình hành
=>AE cắt MK tại trung điểm của mỗi đường
=>I,M,K thẳng hàng
a) Xét tam giác(TG) AIC và tam giác EIB:
IA=IE(gt)
góc AIC= góc EIB
IC=IB(gt)
=> TG AIC= TG EIB
b) Do TG AIC = TG EIB
=> góc IAC = góc IEB(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong => AC // BE
c) Xét TG IAD và TG IEK:
IA=IE(gt)
góc IAD = góc IEK(2 góc so le trong)
AD=EK(gt)
=> TG IAD = TG IEK
=> góc AID = góc EIK
mà gócAID+gócDIE=180độ
=> gócEIK+gócDIE=180độ
=> D,I,K thẳng hàng
Do AC=BE(gt)
AMC=BME(đối đỉnh)
BM=MC(M là trung điểm BC)
Suy ra tam giác AMC=tam giác BME(c-g-c)
ACM=MBE và hai góc này ở vị trí so le trong nên AC // BE
a/ Xét tam giác AMC và tam giác EMB có
AM=ME(gt)
góc AMC=góc EMB(đối đỉnh)
BM=MC( M là trung điểm của BC)
Vậy tam giác AMC = tam giác EMB(c-g-c)
a) Xét \(\Delta EMB\)và \(\Delta AEC\) có:
\(EM=AM\) (gt)
\(\widehat{EMB}=\widehat{EMC}\) (dd)
\(MB=MC\) (gt)
suy ra: \(\Delta EMB=\Delta EMC\) (c.g.c)
\(\Rightarrow\)\(\widehat{MEB}=\widehat{MAC}\) ; \(EB=AC\)
mà \(\widehat{MEB};\widehat{MAC}\) so le trong
\(\Rightarrow\)\(AC\)\(//\)\(EB\)
câu a thì mk cũng làm đc , mk chỉ muốn hỏi câu b và câu c thôi , nhưng dù sao cũng thank you !
b) xét tam giác ICM và BMK có IC=BK ; MB=MC ; gocKBM=ICM(theo câu a ) suy ra ICM=BMK(c.g.c) suy ra BMK=CMI(đổi định) suy ra I ; M ;K THẲNG HÀNG
a) xet tam giac AMC va EBM co BM=CM : AM=ME M1=M2 suy ra EMB=EBM suy ra AC=EB ta co goc MAC=goc MEB suy ra AC//BE (so le trong)