\(\overrightarrow{BG}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

1.D \(\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\dfrac{1}{3}\left(2\overrightarrow{BM}\right)=\dfrac{2}{3}\overrightarrow{BM}=\overrightarrow{BG}\)

2.A \(\overrightarrow{DA}+\overrightarrow{DB}+2.\overrightarrow{DC}=2.\overrightarrow{DM}+2.\overrightarrow{DC}=0\)

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^ Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\) B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\) C....
Đọc tiếp

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^

Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\)\(\overrightarrow{GC}\)

A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\)

B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

C. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) - \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

D. \(\overrightarrow{AM}\) = \(\dfrac{2}{3}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

Câu 2: Cho 4 điểm A, B, C, D. Tính \(\overrightarrow{u}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{DC}\) + \(\overrightarrow{BD}\) + \(\overrightarrow{CA}\)

A. \(\dfrac{2}{3}\) \(\overrightarrow{AC}\) B. \(\overrightarrow{AC}\) C. \(\overrightarrow{0}\) D. 2 \(\overrightarrow{AC}\)

Câu 3: Khẳng định nào sau đây là đúng :

A. Hai vecto \(\overrightarrow{a}\) , k\(\overrightarrow{a}\) luôn cùng hướng

B. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn cùng phương

C. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) bằng độ dài

D. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn ngược hướng

Câu 4: Cho k ≠ 0, \(\overrightarrow{a}\)\(\overrightarrow{0}\) . k \(\overrightarrow{a}\)\(\overrightarrow{a}\) cùng hướng khi :

A. k tùy ý B. \(\left|k\right|\) lớn hơn 0 C. k < 0 D. k lớn hơn 0

Câu 5: Cho G là trọng tâm Δ ABC, O là điểm bất kỳ thì :

A. \(\overrightarrow{AG}\) = \(\dfrac{\overrightarrow{OB}+\overrightarrow{OC}}{2}\) B. \(\overrightarrow{AG}\)​ = \(\dfrac{\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AC}}{3}\)

C. \(\overrightarrow{AG}\) = \(\dfrac{2}{3}\) ( \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) ) D. \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) + \(\overrightarrow{OC}\) = 3 \(\overrightarrow{OG}\)

3
AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 1:

Theo tính chất trọng tâm và đường trung tuyến, ta thấy \(\overrightarrow {AM}; \overrightarrow{GM}\) là 2 vecto cùng phương, cùng hướng và \(AM=3GM\)

\(\Rightarrow \overrightarrow{AM}=3\overrightarrow{GM}\)

\(=\frac{3}{2}(\overrightarrow{GM}+\overrightarrow{GM})\) \(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM})\)

\(=\frac{3}{2}[(\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{BM}+\overrightarrow{CM})]\)

\(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{GC})\) (vecto \(\overrightarrow{BM}; \overrightarrow{CM}\) là 2 vecto đối nhau nên tổng bằng vecto $0$)

Đáp án B

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)

\(=(\overrightarrow{AB}+\overrightarrow{BD})+(\overrightarrow{DC}+\overrightarrow{CA})=\overrightarrow{AD}+\overrightarrow{DA}\)

\(=\overrightarrow{0}\) (tổng của 2 vecto đối nhau)

Đáp án C

Câu 3:

Bạn nhớ rằng \(\overrightarrow{a}; k\overrightarrow{a}(k\in\mathbb{R})\) luôn là 2 vecto cùng phương (tính chất vecto). Nhưng nó mới chỉ là cùng phương thôi. Muốn cùng phương +cùng hướng thì \(k>0\) ; muốn cùng phương + ngược hướng thì \(k< 0\). Nói chung là phụ thuộc vào tính chất của $k$

Câu C thì hiển nhiên sai.

Nên đáp án B đúng

6 tháng 10 2016

Có: \(3\overrightarrow{MA}+4\overrightarrow{MB}=0\Leftrightarrow3\overrightarrow{MA}+4\overrightarrow{MB}+3\overrightarrow{MC}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MC}+\overrightarrow{CB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{CM}-2\overrightarrow{CN}=0\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{NM}=0\)
Vậy 3 điểm M, N, G thẳng hàng.
b, theo như mình biết thì không có thương hai vec tơ.
                                    

8 tháng 11 2018

1. C

2. C

3. Sửa đề:

\(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{BE}\Leftrightarrow\overrightarrow{BD}-\overrightarrow{BE}=\overrightarrow{FD}-\overrightarrow{FE}\Leftrightarrow\overrightarrow{ED}=\overrightarrow{ED}\) (luôn đúng)

NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3