K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

a, AM = ?

Xét ΔABM và ΔACM có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

BM = MC (gt)

Do đó: ΔABM = ΔACM (c.g.c)

=> ^AMB = ^AMC (hai góc tương ứng)

Mà ^AMB + ^AMC = 180o

=> ^AMB = ^AMC = 180o : 2 = 90o

Hay AM ⊥ BC

Ta có: BM = MB = BC/2 = 10/2 =5 (cm)

Áp dụng định lí Pytago vào ΔABM vuông tại M có:

AB2 = AM2 + MB2

=> AM2 = AB2 - MB2 = 132 - 52 = 169 - 25 = 144

=> AM = 12 (cm)

b, NA = NC

Ta có: GM = 1/2AM => AG = 2/3 = AM

Hay G là trọng tâm của ΔABC.

Mà BG cắt AC tại N => BN là trung tuyến ứng với AC

Hay NA = NC.

c, BN = ?

Ta có: GM = 1/3 AM = 1/3 . 12 = 4 (cm)

ÁP dụng định lý Pytago vào ΔBGM vuông tại M có:

BG2 = BM2 + MG2

=> BG2 = 52 + 42 = 25 + 16 = 41 => GB = √41

=> BN = BG + GN = 3BG = 3√41.

d, LN//BC

Vì AB = AC (hai cạnh bên)

Mà CL là trung tuyến ứng với AB, BN là trung tuyến ứng với AC.

Hay LA = LB = AN = NC = AB/2 (=AC/2) LA = LB

=> ΔALN cân tại A

=> ^ALN = ^ANL = 180o - ^BAC / 2

Mặt khác: ΔABC cân tại A => ^ABC = ^ACB = 180o - ^BAC / 2

=> ^ALN = ^ABC

=> LN // BC (TH: hai góc đồng vị)

4 tháng 5 2019

Load nhầm hình nhé ')) Sorry.

17 tháng 1 2019

bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm

17 tháng 1 2019

* hình tự vẽ

1/

Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC

Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm

Xét tam giác ACH, theo định lý Py ta go, có:

AH^2+ HC^2=AC^2

=> AH^2+ 5^2= 12^2

=> AH^2= 144-25

=> AH^2= 119=> AH= căn 119cm

2/ Xét tam giác BCA, theo định lý Py ta go, có:

BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2

=> 144+25= BC^2=> BC^2= 169=>BC=13cm

Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5

Xét tam giác BMN, theo định lý Py ta go, có:

BN^2+NM^2= BM^2

=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm

25 tháng 4 2020

\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)

25 tháng 6 2021

Bài 1 :  A B C D 4

Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

\(\Rightarrow AB=BC=CD=AD=4\)cm 

Áp dụng định lí pytago tam giác ADC vuông tại D ta có : 

\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm 

Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm 

25 tháng 6 2021

Bài 2 : 

A B C D 3 căn27

Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)

Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :

 \(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm 

19 tháng 4 2017

Theo bất đẳng thức tam giác ABC ta có:

AC – BC < AB < AC + BC

Theo độ dài BC = 1cm, AC = 7cm

7 - 1 < AB < 7 + 1

6 < AB < 8 (1)

Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm

Do đó ∆ ABC cân tại A vì AB = AC = 7cm

3 tháng 5 2017

Theo bất đẳng thức tam giác ABC ta có:

AC + BC > AB > AC - BC

hay 7 + 1 > AB > 7 - 1

8 > AB > 6

=> AB = 7 vì 8 > 7 > 6.

Vậy AB = 7cm.

Vì AB = AC = 7cm nên tam giác ABC là tam giác cân và cân tại A.

21 tháng 3 2022

C