K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

1.

a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)

b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)

\(\Rightarrow D=\left(0;6\right)\)

c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)

\(\Rightarrow M=\left(-6;14\right)\)

10 tháng 2 2022

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)

Để \(A,B\ne\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)

Kết hợp ĐK \(2< m< 8\)

\(\Rightarrow m\in\left(2;8\right)\)

10 tháng 2 2022
m€{2;8} nha HT @@@@@@@@@@
           1.Khẳng định nào sau đây là đúng?A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho...
Đọc tiếp

           1.Khẳng định nào sau đây là đúng?

  • A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)
  • B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)
  • C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)
  • D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hành là:
  • A. m = – 7
  • B. m = – 5
  • C. m= D. m = 5                                                                                                                                                                                    3.Cho vectơ \underset{a}{\rightarrow}\underset{b}{\rightarrow} và các số thực m, n, k. Khẳng định nào sau đây là đúng?
  • A. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} suy ra m = n
  • B. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra \underset{a}{\rightarrow} = \underset{b}{\rightarrow}
  • C. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra k = 0
  • D. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} và \underset{a}{\rightarrow}0→ suy ra m = n
0
17 giờ trước (16:14)

✳️ Giải thích các điều kiện

📌 Điều kiện 1: \(A \subset \mathbb{R} \backslash B\)

  • Tức là mọi phần tử của \(A\) không thuộc \(B\)\(A \cap B = \emptyset\)
  • Nghĩa là: Không có phần tử chung giữa \(A = \left(\right. - \infty ; m \left.\right)\)\(B = \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\)

👉 Điều này xảy ra khi:

\(\left(\right. - \infty ; m \left.\right) \cap \left[\right. 3 m + 1 ; 3 m + 2 \left]\right. = \emptyset\)

→ Tức là:

\(m \leq 3 m + 1\)

Giải bất phương trình:

\(m \leq 3 m + 1 \Rightarrow - 2 m \leq 1 \Rightarrow m \geq - \frac{1}{2}\)


📌 Điều kiện 2: \(A \cap B \neq \emptyset\)

Tức là: phải có phần tử chung giữa \(A = \left(\right. - \infty ; m \left.\right)\)\(B = \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\)

→ Tức là:

\(\left(\right. - \infty ; m \left.\right) \cap \left[\right. 3 m + 1 ; 3 m + 2 \left]\right. \neq \emptyset\)

→ Điều này xảy ra khi tồn tại \(x \in \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\) sao cho \(x < m\)

→ Nói cách khác:

\(3 m + 1 < m\)

Giải bất phương trình:

\(3 m + 1 < m \Rightarrow 2 m < - 1 \Rightarrow m < - \frac{1}{2}\)


✅ Kết luận

  • Từ (1): \(m \geq - \frac{1}{2}\)
  • Từ (2): \(m < - \frac{1}{2}\)

⛔ Hai điều kiện mâu thuẫn nhau → Không có giá trị \(m\) nào thỏa mãn đồng thời cả hai điều kiện.

29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

10 tháng 2 2022

a) \(B\subset A\)

\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)

\(\Rightarrow2m-1\le-4< 5\le m+3\)

\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)

\(\Rightarrow m\in\varnothing\)

b) \(A\text{∩ }B=\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)

Vậy \(m< -7;m>3\)

10 tháng 2 2022
M<-7;m>3 nha HT @@@@@@@@@@@@@@