\(\frac{x2}{4}\)và các điểm A ( 1;0.25) ; B (2;2) ; C (4;4) . Các đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là: A. ( 1; 2) B. ( 2;1) C. ( 0;-2) D. ( 0;2) Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y: A. ax + by = c ( a, b, c \(\in\) R ) B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0) C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0) D. A, B,...
Đọc tiếp

Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là:

A. ( 1; 2)

B. ( 2;1)

C. ( 0;-2)

D. ( 0;2)

Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y:

A. ax + by = c ( a, b, c \(\in\) R )

B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0)

C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0)

D. A, B, C đều đúng.

Câu 3: Cho hàm số \(y=\frac{m+2}{m^2+1}x+m-2\). Tìm m để hàm số nghịch biến, ta có kết quả sau:

A. m > -2

B. m \(\ne\pm1\)

C. m < -2

D. m \(\ne\) -2

Câu 4: Đồ thị hàm số y = ax + b ( a \(\ne\) 0) là:

A. Một đường thẳng đi qua gốc toạ độ

B. Một đường thẳng đi qua 2 điểm M ( b;0) và N ( 0;\(-\frac{b}{a}\))

C. Một đường cong Parabol

D. Một đường thẳng đi qua 2 điểm A( 0;b) và B(\(-\frac{b}{a}\);0)

Câu 5: Nghiệm tổng quát của phương trình: -3x + 2y =3 là:

A. \(\left\{{}\begin{matrix}x\in R\\y=\frac{3}{2}x+1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=\frac{2}{3}y-1\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

D. Có hai câu đúng

Câu 6: Cho 2 đường thẳng y = ( m+1)x - 2k ( m \(\ne\) -1) và y = ( 2m - 3)x + k + 1 (m \(\ne\) \(\frac{3}{2}\)). Hai đường thẳng trên trùng nhau khi:

A. m = 4 hay k = \(-\frac{1}{3}\)

B. m = 4 và k = \(-\frac{1}{3}\)

C. m = 4 và k \(\in\) R

D. k = \(-\frac{1}{3}\)và k \(\in\) R

Câu 7: Nghiệm tổng quát của phương trình: 20x + 0y = 25

A. \(\left\{{}\begin{matrix}x=1,25\\y=1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=1,25\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x\in R\\y\in R\end{matrix}\right.\)

D. A, B đều đúng

Câu 8: Số nghiệm của phương trình: ax + by = c ( a, b, c \(\in\) R; a \(\ne\) 0) hoặc ( b \(\ne\) 0) là:

A. Vô số

B. 0

C. 1

D. 2

Câu 9: Cho phương trình: \(x^2-2x+m=0\). Phương trình phân biệt thì:

A. m > 1

B. m > -1

C. m < 1

D. A, B, C đều đúng

Câu 10: Cho hệ phương trình \(\left\{{}\begin{matrix}ax+3y=4\\x+by=-2\end{matrix}\right.\) với giá trị nào của a,b để hệ phương trình có cặp nghiệm ( -1;2)

A. \(\left\{{}\begin{matrix}a=2\\b=\frac{1}{2}\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=2\\b=-\frac{1}{2}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}a=-2\\b=-\frac{1}{2}\end{matrix}\right.\)

0
Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.

9 tháng 5 2017

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

31 tháng 5 2017

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm