\(x^2-x+2x^3+4x^5\)

B(x)=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(2\left(3x-4\right)-3\left(2x+3\right)+\left(3-5x\right)-\left(-4x+2\right)=0\)

\(\Leftrightarrow6x-8-6x-9+3-5x+4x-2=0\)

=>-x-16=0

=>x=-16

NV
4 tháng 3 2020

a/

\(\frac{3x-4}{x-2}-1>0\Leftrightarrow\frac{2x-2}{x-2}>0\Rightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

b/

\(\frac{2x-5}{2-x}+1\le0\Rightarrow\frac{x-3}{2-x}\le0\Rightarrow\left[{}\begin{matrix}x\ge3\\x< 2\end{matrix}\right.\)

c/

\(\frac{x^2+x-3}{x^2-4}-1\le0\Rightarrow\frac{x+1}{x^2-4}\le0\Rightarrow\frac{x+1}{\left(x-2\right)\left(x+2\right)}\le0\Rightarrow\left[{}\begin{matrix}x< -2\\-1\le x< 2\end{matrix}\right.\)

d/

\(\frac{4x^2-8x+6+x^2-x-6}{2\left(x^2-x-6\right)}>0\Rightarrow\frac{x\left(5x-9\right)}{2\left(x+2\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\0< x< \frac{9}{5}\\x< -2\end{matrix}\right.\)

e/

\(\frac{x^2+3x+2}{2x+3}-\frac{2x-5}{4}\ge0\Rightarrow\frac{4x^2+12x+8-\left(2x-5\right)\left(2x+3\right)}{4\left(2x+3\right)}\ge0\)

\(\Rightarrow\frac{28x+23}{4\left(2x+3\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{23}{28}\\x< -\frac{3}{2}\end{matrix}\right.\)

a: A(x)=0

=>2x-6=0

hay x=3

b: B(x)=0

=>3x-6=0

hay x=2

c: M(x)=0

\(\Rightarrow x^2-3x+2=0\)

=>x=2 hoặc x=1

d: P(x)=0

=>(x+6)(x-1)=0

=>x=-6 hoặc x=1

e: Q(x)=0

=>x(x+1)=0

=>x=0 hoặc x=-1

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

NV
26 tháng 10 2019

a/ \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)

b/ \(x\ge-\frac{5}{2}\)

\(\Leftrightarrow\left(4x+7\right)^2=\left(2x+5\right)^2\)

\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

c/ \(x\ge1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=5x-5\\2x^2-3x-5=5-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-8x=0\\2x^2+2x-10=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\\x=\frac{-1+\sqrt{21}}{2}\\x=\frac{-1-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)

NV
26 tháng 10 2019

d/ \(x\ge\frac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\left(l\right)\\x=\sqrt{22}\\x=-\sqrt{22}\left(l\right)\end{matrix}\right.\)

e/ \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-x-2=x-2\\3x^2-x-2=2-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=0\\3x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{2}{3}\left(l\right)\\x=\frac{2\sqrt{3}}{3}\\x=\frac{-2\sqrt{3}}{3}\end{matrix}\right.\)