Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)
Phương trình đường tròn:
\(\left(x-3\right)^2+\left(y-6\right)^2=25\)
b.
\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(x-y+c=0\)
Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)
\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)
\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)
\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)
a/ \(\overrightarrow{AB}=\left(-5;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(4;5\right)\)
\(\Rightarrow\) phương trình đường thẳng AB có dạng:
\(4\left(x-7\right)+5\left(y+1\right)=0\Leftrightarrow4x+5y-23=0\)
b/ \(\overrightarrow{BC}=\left(0;-7\right)\)
Do \(AH\perp BC\) nên đường thẳng AH nhận \(\overrightarrow{BC}\) là một vtpt, chọn \(\overrightarrow{n_{AH}}=\left(0;1\right)\)
Phương trình đường cao AH có dạng:
\(0\left(x-7\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)
Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_M=\dfrac{x_A+x_B}{2}=\dfrac{9}{2}\\y_M=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{9}{2};1\right)\)
\(\Rightarrow\overrightarrow{CM}=\left(\dfrac{5}{2};-5\right)\) \(\Rightarrow\) chọn \(\overrightarrow{n_{CM}}=\left(2;1\right)\) là 1 vtpt của đường thẳng CM
Phương trình trung tuyến AM:
\(2\left(x-2\right)+1\left(y+4\right)=0\Leftrightarrow2x+y=0\)
c/ \(\overrightarrow{n_{\Delta}}=\left(3;-1\right)\)
Gọi \(d\) là đường thẳng đi qua A và vuông góc \(\Delta\Rightarrow\overrightarrow{n_d}.\overrightarrow{n_{\Delta}}=0\)
\(\Rightarrow\) chọn \(\overrightarrow{n_d}=\left(1;3\right)\) là 1 vtpt của \(d\)
Phương trình đường thẳng d:
\(1\left(x-7\right)+3\left(y+1\right)=0\Leftrightarrow x+3y-4=0\)
Hình chiếu vuông góc \(A'\) của A lên \(\Delta\) chính là giao điểm của d và \(\Delta\)
\(\Rightarrow\) tọa độ \(A'\) là nghiệm của hệ:
\(\left\{{}\begin{matrix}x+3y-4=0\\3x-y-12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\) \(\Rightarrow A'\left(4;0\right)\)
d/ \(\Delta'\perp\Delta\Rightarrow\overrightarrow{n_{\Delta'}}.\overrightarrow{n_{\Delta}}=0\Rightarrow\) chọn \(\overrightarrow{n_{\Delta'}}=\left(1;3\right)\) là 1 vtpt của \(\Delta'\)
\(\Rightarrow\) phương trình \(\Delta'\) có dạng: \(x+3y+c=0\)
\(d\left(A;\Delta'\right)=\dfrac{\left|x_A+3y_A+c\right|}{\sqrt{1^2+3^2}}=\sqrt{10}\)
\(\Leftrightarrow\left|7-3+c\right|=10\Leftrightarrow\left|c+4\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}c+4=10\\c+4=-10\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=6\\c=-14\end{matrix}\right.\)
Vậy có 2 đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}x+3y+6=0\\x+3y-14=0\end{matrix}\right.\)
M thuộc d nên tọa độ có dạng:
\(M\left(t+3;t+2\right)\) với \(t>-3\)
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|2\left(t+3\right)-\left(t+2\right)-3\right|}{\sqrt{2^2+\left(-1\right)^2}}=2\sqrt{5}\)
\(\Leftrightarrow\left|t+1\right|=10\Rightarrow\left[{}\begin{matrix}t=9\\t=-11\left(l\right)\end{matrix}\right.\)
\(\Rightarrow M\left(12;11\right)\)
(d): VTPT là (m;1)
(d'): VTPT là (m;-4)
(d) vuông góc (d')
=>m^2-4=0
=>m=2 hoặc m=-2
=>Có 2 số nguyên m thỏa mãn
a/ CD qua E và vuông góc BC nên pt có dạng:
\(1\left(x-6\right)-1\left(y-0\right)=0\Leftrightarrow x-y-6=0\)
Ta có: \(AB=d\left(A;BC\right)=\frac{\left|3+5-2\right|}{\sqrt{1^2+1^2}}=3\sqrt{2}\)
\(AD=d\left(A;CD\right)=\frac{\left|3-5-6\right|}{\sqrt{1^2+\left(-1\right)^2}}=4\sqrt{2}\)
\(\Rightarrow S_{ABCD}=AB.AD=24\)
b/ Do M thuộc d nên tọa độ có dạng: \(M\left(1+t;2-3t\right)\)
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=4\Leftrightarrow\frac{\left|3\left(1+t\right)+4\left(2-3t\right)+5\right|}{\sqrt{3^2+4^2}}=4\)
\(\Leftrightarrow\left|16-9t\right|=20\Rightarrow\left[{}\begin{matrix}16-9t=20\\16-9t=-20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=-\frac{4}{9}\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}M\left(\frac{5}{9};\frac{10}{3}\right)\\M\left(5;-10\right)\end{matrix}\right.\)