Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a/
Ta có (M) tiếp xúc với AB tại H (gt) => AB là tiếp tuyến với (M)
Xét tg vuông ACM và tg vuông AHM có
AM chung
MC=MH (bán kính (M))
=> tg ACM = tg AHM (Hai tg vuông vó cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AMC}=\widehat{AMH}\)
C/m tương tự khi xét 2 tg vuông BDM và BHM ta cũng có
\(\widehat{BMD}=\widehat{BMH}\)
Ta có
\(\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow\widehat{AMC}+\widehat{BMD}=\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\)
\(\Rightarrow\widehat{AMC}+\widehat{BMD}+\widehat{AMB}=90^o+90^o=180^o=\widehat{CMD}\)
=> C; M; D thẳng hàng
Ta có
\(AC\perp CD;BD\perp CD\) => AC//BD
b/ Ta có
AC//BD (cmt) => ACDB là hình thang
Mà
MC=MD (bán kính (M)
OA=OB=R
=> OM là đường trung bình của hình thang ACDB => OM//BD
Mà \(BD\perp CD\)
\(\Rightarrow OM\perp CD\) => CD là tiếp tuyến với (O)
c/
Ta có
AC=AH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
BD=BH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
\(\Rightarrow AC+BD=AH+BH=AB=2R\) không đổi
d/
Khi HC=HD => tg AHD cân tại H
Ta có MC=MD
\(\Rightarrow MH\perp CD\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Mà \(OM\perp CD\left(cmt\right)\)
\(\Rightarrow H\equiv O\)
Xét tg AMB có
\(MH\perp AB\Rightarrow MO\perp AB\)
Mà OA=OB
=> tg AMB cân tại M (tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
=> MA=MB => sđ cung MA = sđ cung MB (trong đường tròn 2 dây cung bằng nhau thì số đo 2 cung tương ứng bằng nhau)
=> M là điểm giưa cung AB
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
Câu 1.
a. Ta có: \(20^2=12^2+16^2\Leftrightarrow BC^2=AB^2+AC^2\)
Theo định lí Pitago đảo thì tam giác ABC là tam giác vuông.
b. Áp dụng hệ thức lượng vào tam giác vuông ABC ta có:
\(AB.AC=AH.BC\) \(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\left(cm\right)\)
c. Ta có: \(AB.cosB+AC.cosC=\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)
\(=\frac{AC^2+AB^2}{BC}=\frac{BC^2}{BC}=BC=20\left(cm\right)\)