Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : AQ // CH ; AP // BH nên Tứ giác AQHP là hình bình hành nên AP = HQ
để C/m CA.AH = CB.AP hay CA.AH = CB.HQ
Ta có : \(\widehat{BHD}=90^o-\widehat{HBD}\); \(\widehat{BCA}=90^o-\widehat{HBD}\)
\(\Rightarrow\widehat{BHD}=\widehat{BCA}\)
Mà \(\widehat{BHD}=\widehat{AHQ}\)( đối đỉnh ) nên \(\widehat{AHQ}=\widehat{BCA}\)
Ta có :
\(\widehat{HAQ}=\widehat{HAC}+\widehat{A_2}=\widehat{HAC}+\widehat{C_1}=180^o-\widehat{AHC}=180^o-\left(90^o+\widehat{A_1}\right)=90^o-\widehat{A_1}\)
Mà \(\widehat{ABC}=90^o-\widehat{A_1}\)
\(\Rightarrow\widehat{ABC}=\widehat{HAQ}\)
Xét \(\Delta ABC\)và \(\Delta HQA\)có :
\(\widehat{ACB}=\widehat{AHQ}\)( cmt ) ; \(\widehat{ABC}=\widehat{HAQ}\)
\(\Rightarrow\Delta ABC\approx\Delta QAH\left(g.g\right)\)
\(\Rightarrow\frac{AC}{BC}=\frac{HQ}{AH}\)hay \(\frac{AC}{BC}=\frac{AP}{AH}\) \(\Rightarrow\)AC.AH = BC.AP
\(a,\left\{{}\begin{matrix}BF//GE\left(gt\right)\\FG//BE\left(gt\right)\end{matrix}\right.\Rightarrow BFGE\) là hbh \(\Rightarrow BF=GE\)
Mà \(BF=AF\left(F.là.trung.điểm.AB\right)\Rightarrow AF=GE\)
Mà \(AF//GE(BF//GE)\)
Do đó \(AFEG\) là hbh
\(b,\left\{{}\begin{matrix}BD=DC\\AE=EC\end{matrix}\right.\Rightarrow ED\) là đtb tg ABC \(\Rightarrow ED//AB\)
Mà \(EG//AB\left(gt\right)\)
Theo tiên đề Ơ-clít ta được EG trùng ED hay E,G,D thẳng hàng
\(c,\) ED là đtb tg ABC nên \(ED=\dfrac{1}{2}AB=AF=BF=GE\left(cm.trên\right)\)
Do đó E là trung điểm GD
Mà E là trung điểm AC nên ADCG là hbh
Do đó \(CG=AD\)
a: Xét ΔABC có
CD/CB=CE/CA
nên DE//AB và DE/AB=1/2
=>EM//BF và EM=BF
=>BEMF là hình bình hành
b: Vì BEMF là hình bình hành
nên BM cắt EF tại trung điểm của mỗi đường(1)
Vì AFDE là hình bình hành
nên AD cắt FE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AD,BM,EF đồng quy
c: Xét tứ giác ADCM có
E là trung điểm chung của AC và DM
nên ADCM là hình bình hành
=>AD=CM
Ta có: AEH=90⁰.
=>HAE+AHE=90⁰.(1)
Ta có: ∆BHD vuông tại D.
=>DBH+BHD=90⁰.(2)
Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.
Mà: AHE=DBH (2 góc đối đỉnh).
=> HAE=DBH.
=>HAE=DBE.
=>∆HEA~CBE(g.g).
=>AE/BE=HE/CE.
=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².
=> (AE+CE)²=4AE.CE.
=>(AE-CE)²=0.
=>AE=CE
=> E là trung điểm của AC
=> BE là đường trung tuyến của ∆ABC
Mà: BE là đường cao của ∆ABC.
=> ∆ABC cân tại B.
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
=>BH=CH
b: Xét ΔEAH và ΔECF có
góc EAH=góc ECF
EA=EC
góc AEH=góc CEF
=>ΔEAH=ΔECF
=>EH=EF
Km ko bt