\(8x^{n+3}+2x^{n+2}-x^{n+1}+3x^n\)

g(x)=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

f(x) + g(x) =  ( 8xn+3 + 2xn+2 - xn-1 + 3xn ) + ( -8xn+3 - 2xn+2 + xn+1 + 2xn ) 

= 8xn+3 + 2xn+2 - xn-1 + 3xn - 8xn+3 - 2xn+2 + xn+1 + 2xn

= 5xn

+, Nếu n = o và x # \(\Rightarrow\)xn = x0 = 1

+, Nếu n \(\in\)N và x = 1 \(\Rightarrow\)xn = 1n = 1

+, Nếu n = 2k và x = -1 \(\Rightarrow\)xn = -12k = 1

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự

5 tháng 4 2017

Theo giả thiết, ta có:

f(x)=g(x)\(\Rightarrow\)(-3x\(^2\)+2x-1)=(-3x\(^2\)-2+x)

\(\Rightarrow\)f(x)-g(x)=(-3x\(^2\)+2x-1)-(-3x\(^2\)-2+x)=0

\(\Rightarrow\)-3x\(^2\)+2x-1+3x\(^2\)+2-x=0

\(\Rightarrow\)(-3x\(^2\)+3x\(^2\))+(2x-x)+(-1+2)=0

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=0-1

\(\Rightarrow\)x=-1

Vậy với x=-1 thì f(x)=g(x).

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

23 tháng 2 2019

a, f(1) = 100 + 99 + ... + 2 + 1 + 1

=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"

=> f(x) = 4951 

Hihi..

23 tháng 2 2019

b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)

g(1) = 1 . 2016

g(1) = 2016

g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015

g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]

g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]

g(-1) = 1008 - 1008

g(-1) = 0

k nha!!

31 tháng 3 2020

Bài 1:

1. Thay x=-5;y=3 vào P ta được:

P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40

2. P=2x(x+y-1)+y2+1

\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

31 tháng 3 2020

Bài 2:

1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)

\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0

Vậy x=-4 là nghiệm của f(x)

3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)

Bạn tham khảo nha, không hiểu cứ hỏi mình ha

25 tháng 3 2018

a. Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

= -x3 + 4x2 – x + 6

b. Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

= x3 – 4x2 + x – 6

15 tháng 12 2017

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Lời giải:

\(f(x)=g(x)\)

\(\Leftrightarrow -3x^2+2x+1=-3x^2-2+x\)

\(\Leftrightarrow 2x+1=-2+x\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)