Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:
\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)
Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D