Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.
a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A -1
Rút gọn đúng cho.
b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1\)= \(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d
Nên d = 1 tức là \(a^2+a+1\)và\(a^2+a-1\)là nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a. \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b. Trước hết ta nhận xét: \(\hept{\begin{cases}a^2+a-1=a\left(a+1\right)-1\\a^2+a+1=a\left(a+1\right)+1\end{cases}}\). Vì a(a + 1) là số chẵn nên cả hai số trên đều không chia hết cho 2.
Gọi d là ƯCLN của \(a^2+a-1\) và \(a^2+a+1\). Khi đó d khác 2 và \(a^2+a-1-\left(a^2+1+1\right)=-2\) chia hết d. Do d max và d khác 2 nên d = 1.
Vậy với a nguyên thì phân số \(A=\frac{a^2+a-1}{a^2+a+1}\) tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
Mai Ngọc Trâm
Câu 1 : Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath
Câu 2 :
Ta có : abc = 100 x a + 10 x b + c = n2 ‐ 1 ﴾1﴿
cba = 100 x c + 10 x b + a = n2 ‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được :
99 x ﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 \(\le\) abc \(\le\) 999 nên :
100 ≤ n2 ‐1 ≤ 999 => 101 ≤ n2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n ‐ 5 ≤ 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675
Câu 1: Ta có: A= \(\dfrac{a^3+2a^2-1}{a^3+2a^2+2a+1}\) =\(\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
a. Điều kiện đúng \(a\ne-1\)
Rút gọn biểu thức \(\dfrac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ƯCLN của a2 + a - 1 và a2 + a - 1 và a2 + a + 1
Vì a2 + a - 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác 2 =[ a2+a +1 – (a2 + a – 1) ] chia hết d
Nên d = 1 tức là a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau
Câu 2: \(\overline{\text{abc}}\) = 100a + 10 b + c = n2 - 1 (1)
\(\overline{\text{cba}}\) = 100c + 10 b + c = n2 – 4n + 4 (2)
Từ (1) và (2) \(\Rightarrow\) 99(a-c) = 4 n – 5 \(\Rightarrow\) 4n – 5 chia hết 99 (3)
Mặt khác: 100[ n2-1[999\(\Leftrightarrow\)101 [n2 [1000\(\Leftrightarrow\)11 [n[31\(\Leftrightarrow\)39[4n-5
[119] (3)
Từ (3) và (4) \(\Rightarrow\) 4n – 5 = 99 \(\Rightarrow\) n = 26
Vậy: \(\overline{\text{abc}}\) = 675