K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

\(x^2+7x-a^2+a+12=0\)

\(\Leftrightarrow x^2-ax+4x+ax+3x-a^2+a+12=0\)

\(\Leftrightarrow\left(x^2-ax+4x\right)+\left(ax+3x\right)-\left(a^2+3a\right)+\left(4a+12\right)=0\)

\(\Leftrightarrow x\left(x-a+4\right)+x\left(a+3\right)-a\left(a+3\right)+4\left(a+3\right)=0\)

\(\Leftrightarrow x\left(x-a+4\right)+\left(a+3\right)\left(x-a+4\right)=0\)

\(\Leftrightarrow\left(x+a+3\right)\left(x-a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+a+3=0\\x-a+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-a-3\\x=a-4\end{cases}}}\)

Vậy \(x=-a-3\) hoặc \(x=a-4\)

19 tháng 2 2018

bài 2:

c)    \(x^3+8x^2+17x+10=0\)

\(\Leftrightarrow\)\(x^3+x^2+7x^2+7x+10x+10=0\)

\(\Leftrightarrow\)\(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2+7x+10\right)=0\)

đến đây thì dễ rồi, bn cm  x^2 + 7x + 10 > 0 

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp

23 tháng 1 2017

=(x2+7x+12)-a2+a=0

=(x+3)(x+4)-a2+a=0

Đặt x+3=y.Ta có

=y2+y-a2+a=0

=(y-a+1)(y+a)=0

=>y=a-1,y=-a

mà x+3=y

=>x=a-4 và x=-a-3

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow\left(6x^4-6x^3\right)+\left(5x^3-5x^2\right)+\left(-2x^2+2x\right)+\left(-x+1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(6x^3-3x^2\right)+\left(8x^2-4x\right)+\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(3x^2+4x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[\left(3x^2+3x\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[3x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x+1\right)\left(3x+1\right)=0\)

\(\left\{{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)