Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để các phân số tồn tại là a,b,c đều khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a = a+b+c/a+b+c = 1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2 = 1/3
=> ĐPCM
k mk nha
Nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}>>\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\) rồi áp dụng tính chất dãy tỉ số bằng nhau suy ra a=b=c ( ko ra được thì đừng giải bài này vì sẽ hơi khó đấy )
Tách (a+b+c)^2 = a^2 +b^2 + c^2 + 2ab +2bc +2ca. Từ a=b=c >> ab=a^2, bc=b^2, ca=c^2. Vậy 2ab+2bc+2ca=2a^2+2b^2+2c^2
>> (a+b+c)^2 = a^2 +b^2 + c^2 + 2a^2+2b^2+2c^2 = 3(a^2 +b^2 + c^2). Ghép vào cái phân số kia là ra.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
Ta có: \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\ge0\\b-1\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)(Vì \(c\ge0\))
Mà \(\frac{c}{a+b}\le\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)(Vì \(c\ge0\))
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự: \(\frac{b}{bc+1}\le\frac{2b}{a+b+c};\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{bc+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Câu 1 :
ad=bc => a/b=c/d ( a,b,c,d khác 0 )
=> b/a=d/c
=> 1-b/a=1-d/c
=> a-b/a=c-d/c
=> a/a-b=c/c-d
=> ĐPCM
Câu 2 :
Đk để phân số tồn tại là a,b,c khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/a+b+c=1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3
=> ĐPCM
k mk nha
câu 2 : là (a+b+c)^2 nha mn mình nhầm