\(1+\dfrac{a}{b})\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

ta có : \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+\dfrac{b}{c}+\dfrac{a}{b}+\dfrac{ab}{bc}\right)\left(1+\dfrac{c}{a}\right)\)

\(=1+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{bc}{ac}+\dfrac{a}{b}+\dfrac{ac}{ba}+\dfrac{ab}{bc}+1\)

\(=2+\left(\dfrac{c}{a}+\dfrac{ab}{bc}\right)+\left(\dfrac{b}{c}+\dfrac{ac}{ba}\right)+\left(\dfrac{a}{b}+\dfrac{bc}{ac}\right)\ge2+2+2+2=8\) \(\Rightarrowđpcm\)

30 tháng 12 2017

Hỏi đáp Toán

NV
26 tháng 3 2019

Giả sử các biểu thức đều xác định:

\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)

\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)

\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)

\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)

NV
21 tháng 4 2020

\(cos\varphi=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}=\frac{-1.2+3.1}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{2^2+1^2}}=\frac{1}{5\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Lời giải:

Do $a+b+c=1$ nên:

\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)

\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

14 tháng 6 2018

điều kiện : x >-1/2

⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0

ap dụng bất đẳng thức Cauchy ta có:

f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4

⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi

2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)

VẬY ĐÁP ÁN LÀ C

AH
Akai Haruma
Giáo viên
18 tháng 11 2017

Bài này rất dài dòng nhưng cũng rất quen.

https://diendantoanhoc.net/topic/153766-bổ-đề-hoán-vị/

18 tháng 11 2017

bài này tui post lên cho mn xem và chia sẻ cách làm nhé bn còn cách nào hay thì sharre hết cho mk với ;v

AH
Akai Haruma
Giáo viên
25 tháng 2 2017

Giải:

Ta có: \(A=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)\)

\(\Leftrightarrow A=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq \frac{9}{a+b+c+3}=\frac{9}{4}\)

Suy ra \(A\leq 3-\frac{9}{4}=\frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

25 tháng 2 2017

Xét: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\left\{\begin{matrix}\frac{a}{2a+b+c}=\frac{a}{a+b+a+c}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\\\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}\right]+\left[\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}\right]+\left[\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\frac{a+b}{4\left(a+b\right)}+\frac{a+c}{4\left(a+c\right)}+\frac{b+c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)

\(\Rightarrow VT\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le\frac{3}{4}\) ( đpcm )

7 tháng 7 2017

Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)

\(E=\dfrac{y^2+b}{yz+b}\)

\(F=\dfrac{z^2+c}{xz+c}\)

Dự đoán: Đẳng thức xảy ra khi: D=E=F=1

Áp dụng bđt AM_GM :

||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||

\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)

\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)

*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .

Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương

\(\Rightarrow\) (*) đúng

Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)

Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z

|| kết luận viết như nào đây........||

----------------------

Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ

9 tháng 7 2017

Áp dụng BĐT AM-GM:

\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)

Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)

Áp dụng BĐT chebyshev:

\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)

hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)

Điều này đúng khi ta có thứ tự sắp biến sau:

\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)

Thật vậy, giả sử \(x\ge y\ge z\)\(a=max\left\{a,b,c\right\}\) thì điều trên đúng

P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Bài 1:

Áp dụng BĐT Holder:

\((a^7+b^7+c^7)(a+b+c)(a+b+c)\geq (a^3+b^3+c^3)^3\)

\(\Rightarrow P=a^7+b^7+c^7\geq \frac{(a^3+b^3+c^3)^3}{(a+b+c)^2}\) \((1)\)

Tiếp tục Holder:

\((a^3+b^3+c^3)(1+1+1)(1+1+1)\geq (a+b+c)^3\)

\(\Rightarrow (a+b+c)\leq \sqrt[3]{9(a^3+b^3+c^3)}\) \((2)\)

Từ \((1),(2)\Rightarrow P\geq \frac{\sqrt[3]{(a^3+b^3+c^3)^7}}{\sqrt[3]{81}}\) \((3)\)

Áp dụng BĐT AM-GM:

\((a^3+b^3+c^3)^2\geq 3(a^3b^3+b^3c^3+c^3a^3)\geq 3\)

\(\Rightarrow a^3+b^3+c^3\geq \sqrt{3}\) \((4)\)

Từ \((3),(4)\Rightarrow P\geq \sqrt[6]{\frac{1}{3}}\)

Vậy \(P_{\min}=\sqrt[6]{\frac{1}{3}}\Leftrightarrow a=b=c=\sqrt[6]{\frac{1}{3}}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Bài 2:

Áp dụng BĐT AM-GM:

\(a^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{a^3.\sqrt{\frac{1}{27^2}}}=a\)

\(b^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{b^3.\sqrt{\frac{1}{27^2}}}=b\)

\(c^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{c^3.\sqrt{\frac{1}{27^2}}}=c\)

Cộng theo vế:

\(a^3+b^3+c^3+6\sqrt{\frac{1}{27}}\geq a+b+c\)

Áp dụng BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)=3\Rightarrow a+b+c\geq \sqrt{3}\)

Do đó, \(a^3+b^3+c^3\geq \sqrt{3}-6\sqrt{\frac{1}{27}}=\sqrt{\frac{1}{3}}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)