K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1

\(a^2+b^2=7ab\Leftrightarrow a^2+b^2+2ab=9ab\)

\(\Leftrightarrow\left(a+b\right)^2=9ab\Leftrightarrow\dfrac{\left(a+b\right)^2}{9}=ab\)

\(\Leftrightarrow\left(\dfrac{a+b}{3}\right)^2=ab\)

Lấy logarit cơ số 2 hai vế:

\(log_2\left(\dfrac{a+b}{3}\right)^2=log\left(ab\right)\)

\(\Leftrightarrow2log_2\left(\dfrac{a+b}{3}\right)=log_2a+log_2b\)

29 tháng 1

https://hoc24.vn/cau-hoi/.8778209332689

giúp em ạ

11 tháng 5 2016

\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}=\frac{1+2\log_2a+\log_2a\left(\log_2a+1\right)+8\log^2_2a}{3\log_2a.\left(3\log_2a+1\right)+1}\)

    \(=\frac{9\log^2_2a+3\log_2a+1}{9\log^2_2a+3\log_2a+1}=1\)

16 tháng 7 2019

Đáp án D

NV
5 tháng 1

\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)

\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)

\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)

\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)

28 tháng 9 2017

12 tháng 4 2017

a) \(log_3\dfrac{6}{5}>log_3\dfrac{5}{6}\) vì \(\dfrac{6}{5}>\dfrac{5}{6}\)

b) \(log_{\dfrac{1}{3}}9>log_{\dfrac{1}{3}}17\) vì \(9>17\) và \(0< \dfrac{1}{3}< 1\).

c) \(log_{\dfrac{1}{2}}e>log_{\dfrac{1}{2}}\pi\) vì \(e>\pi\) và \(0< \dfrac{1}{2}< 1\)

d) \(log_2\dfrac{\sqrt{5}}{2}>log_2\dfrac{\sqrt{3}}{2}\)  vì \(\dfrac{\sqrt{5}}{2}>\dfrac{\sqrt{3}}{2}\).

Em rất muốn biết ... anh học lớp mấy vậy ??? Đây là bài lớp 12 mà batngo

19 tháng 6 2017

Chọn C.

Ta có: logxyz( y3z2) = 3logxyzy + 2logxyzz

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

30 tháng 5 2017

a) \(\left(\dfrac{1}{9}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{-2}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{log^4_3}\right)^{-2.\dfrac{1}{2}}=4^{-1}=\dfrac{1}{4}\);
b) \(10^{3-log5}=\dfrac{10^3}{10^{log5}}=\dfrac{10^3}{5}=200\);
c) \(2log^{log1000}_{27}=2log^3_{3^3}=\dfrac{2}{3}log^3_3=\dfrac{2}{3}\);
d) \(3log_2^{log_4^{16}}+log^2_{\dfrac{1}{2}}=3log^2_2-log^2_2=3-1=2\).