Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc bạn ghi nhầm đề? Tích phân cuối ko liên quan gì hết trơn đến 2 tích phân trước, bạn xem kĩ lại cận của 3 tích phân
Đặt \(3-2x=t\Rightarrow dx=-\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=3\\x=2\Rightarrow t=-1\end{matrix}\right.\)
\(\Rightarrow P=\int\limits^{-1}_3\left[f\left(t\right)+2019\right].\left(-\frac{1}{2}\right)dt=\frac{1}{2}\int\limits^3_{-1}f\left(t\right)dt+\int\limits^3_{-1}\frac{2019}{2}dt\)
\(=\frac{15}{2}+\frac{2019}{2}.4=\frac{8091}{2}\)
Câu a: Tích phân không thể tính được
Câu b:
Đặt \(\sqrt{x}=t\). Khi đó:
\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)
Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:
\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)
\(=-t^3\cos t+3\int t^2\cos tdt\)
\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)
\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)
\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)
\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)
\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)
\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)
\(=2\pi ^3-12\pi \)
Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)
Khi đó:
\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)
Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)
\(=(-t\cot t+\int \cot tdt)+\cot t+c\)
\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)
\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)
\(=-t\cot t+\ln |\sin t|+\cot t+c\)
\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)
\(\approx 0,007\)
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
\(I_1=\int\limits^2_0f\left(2x\right)dx\)
Đặt \(2x=t\Rightarrow dx=\frac{dt}{2}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I_1=\int\limits^4_0f\left(t\right).\frac{dt}{2}=\frac{1}{2}\int\limits^4_0f\left(t\right)dt=\frac{1}{2}\int\limits^4_0f\left(x\right)dx=\frac{1}{2}.2018=1009\)
\(I_2=\int\limits^2_{-2}f\left(2-x\right)dx\)
Đặt \(2-x=t\Rightarrow dx=-dt\); \(\left\{{}\begin{matrix}x=-2\Rightarrow t=4\\x=2\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I_2=\int\limits^0_4f\left(t\right).\left(-dt\right)=\int\limits^4_0f\left(t\right)dt=\int\limits^4_0f\left(x\right)dx=2018\)
\(\Rightarrow I=I_1+I_2=1009+2018=3027\)
1)
Ta có:
\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)
\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)
\(=3x+\int d(\cot x)=3x+\cot x+c\)
\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)
3)
Xét \(\int (2\tan x-3\cot x)^2dx\)
\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)
\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)
\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)
\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)
\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)
\(=4\tan x-9\cot x-25x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)
2)
Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)
\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)
\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)
b/ Ko rõ đề
c/ Không rõ đề
d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
lâu ko làm tích phân cũng quên béng đi rồi những câu này cũng không khó chú ý 1 chút là làm đc ak ,
trong cái căn bậc 2 nhé 3+2x-x^2= -((x-1)^2+2)) sau do dat x-1=a nen x+1=a+2 thay vap bieu tu lam binh thuong la ra thoi ak
Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]
\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)
Câu 2:
Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được