K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2020

Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]

\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)

Câu 2:

Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được

NV
28 tháng 4 2020

Chắc bạn ghi nhầm đề? Tích phân cuối ko liên quan gì hết trơn đến 2 tích phân trước, bạn xem kĩ lại cận của 3 tích phân

NV
12 tháng 4 2020

Đặt \(3-2x=t\Rightarrow dx=-\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=3\\x=2\Rightarrow t=-1\end{matrix}\right.\)

\(\Rightarrow P=\int\limits^{-1}_3\left[f\left(t\right)+2019\right].\left(-\frac{1}{2}\right)dt=\frac{1}{2}\int\limits^3_{-1}f\left(t\right)dt+\int\limits^3_{-1}\frac{2019}{2}dt\)

\(=\frac{15}{2}+\frac{2019}{2}.4=\frac{8091}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu a: Tích phân không thể tính được

Câu b:

Đặt \(\sqrt{x}=t\). Khi đó:

\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)

Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:

\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)

\(=-t^3\cos t+3\int t^2\cos tdt\)

\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)

\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)

\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)

\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)

\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)

\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)

\(=2\pi ^3-12\pi \)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)

Khi đó:

\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)

Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)

\(=(-t\cot t+\int \cot tdt)+\cot t+c\)

\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)

\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)

\(=-t\cot t+\ln |\sin t|+\cot t+c\)

\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)

\(\approx 0,007\)

NV
14 tháng 4 2020

Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó

Câu 1:

a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)

b/ \(\int\frac{1}{x.lnx}dx\)

Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)

\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)

c/ \(I=\int x.sin\frac{x}{2}dx\)

Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)

\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)

d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)

\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)

NV
29 tháng 5 2019

\(I_1=\int\limits^2_0f\left(2x\right)dx\)

Đặt \(2x=t\Rightarrow dx=\frac{dt}{2}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)

\(\Rightarrow I_1=\int\limits^4_0f\left(t\right).\frac{dt}{2}=\frac{1}{2}\int\limits^4_0f\left(t\right)dt=\frac{1}{2}\int\limits^4_0f\left(x\right)dx=\frac{1}{2}.2018=1009\)

\(I_2=\int\limits^2_{-2}f\left(2-x\right)dx\)

Đặt \(2-x=t\Rightarrow dx=-dt\); \(\left\{{}\begin{matrix}x=-2\Rightarrow t=4\\x=2\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow I_2=\int\limits^0_4f\left(t\right).\left(-dt\right)=\int\limits^4_0f\left(t\right)dt=\int\limits^4_0f\left(x\right)dx=2018\)

\(\Rightarrow I=I_1+I_2=1009+2018=3027\)

29 tháng 5 2019

cám ơn ạ

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

1)

Ta có:

\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)

\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)

\(=3x+\int d(\cot x)=3x+\cot x+c\)

\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)

3)

Xét \(\int (2\tan x-3\cot x)^2dx\)

\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)

\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)

\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)

\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)

\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)

\(=4\tan x-9\cot x-25x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)

 

 

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

2)

Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)

\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)

\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

NV
24 tháng 4 2020

a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)

b/ Ko rõ đề

c/ Không rõ đề

d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

1 tháng 6 2016

lâu ko làm tích phân cũng quên béng đi rồi những câu này cũng không khó chú ý 1 chút là làm đc ak , 

trong cái căn bậc 2 nhé 3+2x-x^2= -((x-1)^2+2)) sau do dat x-1=a nen x+1=a+2 thay vap bieu tu lam binh thuong la ra thoi ak