Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số cuốn sách Toán và Lý là : \(3+4=7\) (cuốn)
Chọn 1 trong 7 cuốn sách khác nhau gồm Toán và Lý trên có
\(C^1_7=7\) ( cách )
Vậy có 7 cách chọn 1 cuốn sách trong số các cuốn trên.
Số cách chọn 1 cuốn sách trong số 7 cuốn sách: \(C_7^1\)
Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách
Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách
Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách
Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách
Theo quy tắc nhân, ta có số cách xếp thỏa mãn là:
\(2.6.24.6=1728\) cách
Xếp 2 cuốn sách lý cạnh nhau: cách
Xếp 3 cuốn hóa cạnh nhau: cách
Xếp 4 cuốn toán cạnh nhau: cách
Xếp bộ 3 toán-lý-hóa: cách
Theo quy tắc nhân, ta có số cách xếp thỏa mãn là:
cách
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
câu 1:
a) \(x^4-x^2-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=-3\left(vl\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(\sqrt{x+2}+1=2x\)
\(\Leftrightarrow\sqrt{x+2}=2x-1\)
\(\Leftrightarrow x+2=\left(2x-1\right)^2\) ( đk \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow x+2=4x^2-4x+1\)
\(\Leftrightarrow4x^2-5x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{41}}{8}\left(nhận\right)\\x=\dfrac{5-\sqrt{41}}{8}\left(loại\right)\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x-3y=-9\\2x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-9\\6x+3y=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=-9\\7x=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
Câu 2:
Gọi số sách văn là x
Số sách toán là 3x
Theo đề, ta có: \(\left(x-5\right)^2=3x+3\)
=>x^2-10x+25-3x-3=0
=>x^2-13x+22=0
=>x=2 hoặc x=11
=>Số sách toán có thể là 6 hoặc 33 cuốn