K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta đặt \(n+4=a^2\). Vì n là STN có 2 chữ số:

\(10\le n\le99\Rightarrow14\le a^2\le103\)

\(\Rightarrow4\le a\le10\)

Ta dễ thấy: \(2n\) là số bình phương chẵn, nên \(2n⋮4,n⋮2\)

\(\Rightarrow n+4\left(chẵn\right)\Rightarrow a\left(chẵn\right)\)

\(\Rightarrow a\in\left\{4,6,8,10\right\}\)

* \(a=4\Rightarrow n^2-4=12\Rightarrow2n=24\notin\) số chính phương

* \(a=6\Rightarrow n=a^2-4=32\Rightarrow2n=64\in spc\left(Tm\right)\)

* \(a=8\Rightarrow n=a^2-4=60\Rightarrow2n=120\notin\) số chính phương

* \(a=10\Rightarrow n=a^2-4=96\Rightarrow2n=196\notin\) số chính phương

Vậy \(n=32\left(đpcm\right)\)

22 tháng 4 2018

1)a)p là số nguyên tố

\(\Rightarrow p\equiv r\left(mod3\right)\left(r\in1,2\right)\)

\(\Rightarrow p^2\equiv1^2\equiv2^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2+2018⋮3\)

\(p^2+2018>3\Rightarrow p^2+2018\) là hợp số

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

4 tháng 9 2019

\(5^a+25\)

\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)

\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)

\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)

\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)

\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)

4 tháng 9 2019

shitbo ơi, TH cuối 5^n không chia hết cho 4 đúng không

2 tháng 2 2017

2b nhé bạn!

Giả sử 2002+n2 là số chính phương m2

Hiển nhiên 2002 chia cho 4 dư 2

Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)

  • Nếu m2 dạng 4k

Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương

  • Nếu m2 dạng 4k+1

Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương

Vậy không tồn tại n để 2002+n2 là số chính phương

5 tháng 9 2023

 

Bài toán 1

Ta có thể viết:

A(x) = (3 - 4x + x^2)^2004 * (3 + 4x + x^2)^2005 = (3^2004 - 2 * 3^2004 * 4x + 4^2004 * x^2 + 2 * 3^2004 * 4x^2 - 2 * 3 * 4^2004 * x^3 + 4^4009 * x^4) = 3^4008 - 2 * 3^2005 * 4x - 2 * 3^2004 * 4x^2 + 4^4009 * x^4

Tổng các hệ số của đa thức này là:

1 + (-2 * 2005) + (-2 * 2004) + 1 = -6014

Vậy đáp án là -6014.

Bài toán 2

Ta có thể viết:

a = 111...1 (2n chữ số 1) b = 111...1 (n + 1 chữ số 1) c = 666...6 (n chữ số 6)

Vậy:

a + b + c + 8 = 111...1 (2n) + 111...1 (n + 1) + 666...6 (n) + 8

Ta có thể chia cả hai vế cho 8 được:

(a + b + c + 8) / 8 = 111...1 (2n) / 8 + 111...1 (n + 1) / 8 + 666...6 (n) / 8 + 1

Ta có thể thấy rằng:

111...1 (2n) / 8 = (111...1 (n))^2 111...1 (n + 1) / 8 = (111...1 (n))^2 + 1 666...6 (n) / 8 = (111...1 (n))^2 - 1

Vậy:

(a + b + c + 8) / 8 = (111...1 (n))^2 + (111...1 (n))^2 + 1 + (111...1 (n))^2 - 1 + 1 = 3 * (111...1 (n))^2 + 1

Ta có thể thấy rằng:

(111...1 (n))^2 + 1 = (111...1 (n) + 1)(111...1 (n) - 1)

Vậy:

(a + b + c + 8) / 8 = 3 * (111...1 (n) + 1)(111...1 (n) - 1) + 1 = 3 * (222...2 (n + 1))

Từ đó, ta có:

a + b + c + 8 = 666...6 (2n + 2)

Vậy, a + b + c + 8 là số chính phương.

Bài toán 3

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 1, ta có:

ab + 4 = 4

4 là số chính phương.

Bước đệm

Giả sử rằng với mọi số tự nhiên a < n, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bước kết luận

Xét số tự nhiên a = n.

Theo giả thuyết, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Vậy, (n + 1)b + 4 = (n + 1)(ab + 4) + 3 là số chính phương, vì ab +

ghi từng câu thôi ai mak làm cho nổi Nhân tài ngùm hết lun đó

câu 3 hỏi cái j?