Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
- Nếu m2 dạng 4k
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
- Nếu m2 dạng 4k+1
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
Bài toán 1
Ta có thể viết:
A(x) = (3 - 4x + x^2)^2004 * (3 + 4x + x^2)^2005 = (3^2004 - 2 * 3^2004 * 4x + 4^2004 * x^2 + 2 * 3^2004 * 4x^2 - 2 * 3 * 4^2004 * x^3 + 4^4009 * x^4) = 3^4008 - 2 * 3^2005 * 4x - 2 * 3^2004 * 4x^2 + 4^4009 * x^4
Tổng các hệ số của đa thức này là:
1 + (-2 * 2005) + (-2 * 2004) + 1 = -6014Vậy đáp án là -6014.
Bài toán 2
Ta có thể viết:
a = 111...1 (2n chữ số 1) b = 111...1 (n + 1 chữ số 1) c = 666...6 (n chữ số 6)Vậy:
a + b + c + 8 = 111...1 (2n) + 111...1 (n + 1) + 666...6 (n) + 8Ta có thể chia cả hai vế cho 8 được:
(a + b + c + 8) / 8 = 111...1 (2n) / 8 + 111...1 (n + 1) / 8 + 666...6 (n) / 8 + 1Ta có thể thấy rằng:
111...1 (2n) / 8 = (111...1 (n))^2 111...1 (n + 1) / 8 = (111...1 (n))^2 + 1 666...6 (n) / 8 = (111...1 (n))^2 - 1Vậy:
(a + b + c + 8) / 8 = (111...1 (n))^2 + (111...1 (n))^2 + 1 + (111...1 (n))^2 - 1 + 1 = 3 * (111...1 (n))^2 + 1Ta có thể thấy rằng:
(111...1 (n))^2 + 1 = (111...1 (n) + 1)(111...1 (n) - 1)Vậy:
(a + b + c + 8) / 8 = 3 * (111...1 (n) + 1)(111...1 (n) - 1) + 1 = 3 * (222...2 (n + 1))Từ đó, ta có:
a + b + c + 8 = 666...6 (2n + 2)Vậy, a + b + c + 8 là số chính phương.
Bài toán 3
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 1, ta có:
ab + 4 = 44 là số chính phương.
Bước đệm
Giả sử rằng với mọi số tự nhiên a < n, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bước kết luận
Xét số tự nhiên a = n.
Theo giả thuyết, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Vậy, (n + 1)b + 4 = (n + 1)(ab + 4) + 3 là số chính phương, vì ab +
Ta đặt \(n+4=a^2\). Vì n là STN có 2 chữ số:
\(10\le n\le99\Rightarrow14\le a^2\le103\)
\(\Rightarrow4\le a\le10\)
Ta dễ thấy: \(2n\) là số bình phương chẵn, nên \(2n⋮4,n⋮2\)
\(\Rightarrow n+4\left(chẵn\right)\Rightarrow a\left(chẵn\right)\)
\(\Rightarrow a\in\left\{4,6,8,10\right\}\)
* \(a=4\Rightarrow n^2-4=12\Rightarrow2n=24\notin\) số chính phương
* \(a=6\Rightarrow n=a^2-4=32\Rightarrow2n=64\in spc\left(Tm\right)\)
* \(a=8\Rightarrow n=a^2-4=60\Rightarrow2n=120\notin\) số chính phương
* \(a=10\Rightarrow n=a^2-4=96\Rightarrow2n=196\notin\) số chính phương
Vậy \(n=32\left(đpcm\right)\)
1)a)p là số nguyên tố
\(\Rightarrow p\equiv r\left(mod3\right)\left(r\in1,2\right)\)
\(\Rightarrow p^2\equiv1^2\equiv2^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2+2018⋮3\)
Mà \(p^2+2018>3\Rightarrow p^2+2018\) là hợp số