Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a. -3xy2 . (4x2 - xy + 2y2)= -12x3y2 + 3x2y3 - 6xy4
b. 3xn-2yn-1 . (xn+2 - 2xn+1yn + yn+1) = 3x2nyn-1 - 6x2n-1y2n-1 + 3xn-2y2n
Bài 2.
a. 2x(x+3)-3x2(x+2)+x(3x2+4x-6)
= 2x2+6x-3x3-6x2+3x3+4x2-6x
= 0
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
b. 3x(2x2-x)-2x2(3x+1)+5(x2-1)
= 6x3-3x2-6x3-2x2+5x2-5
= -5
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
c. 4(x-6)-x2(3x+2)+x(5x-4)+3x2(x-1)
= 4x-24-3x3-2x2+5x2-4x+3x3-3x2
= -24.
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
d. xy(3x2-6xy)-3(x3y-2x2y2-1)
= 3x3y-6x2y2-3x3y+6x2y2+3
= 3.
Vậy giá trị của biểu thức trên không phụ thuộc vào các biến x,y.
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
Câu 1:
a/ (-5x3)(2x2+3x-5)
=-10x5-15x4+25x3
b/(2x-1)x
=2x2-x
c/(x-y)(3x2+4xy)
=3x3+4x2y-3x2y-4xy2
=3x3 +x2y-4xy2
Câu 2:
a/ x3-2x2+x
=x(x2-2x+1)
=x(x-1)2
b/x2-x-12
=x2 +3x-4x-12
=(x2 +3x)+(-4x-12)
=x(x+3)-4(x+3)
=(x+3)(x-4)
c/ 2x-6
=2(x-3)
e/ x2+4x+4-y2
=(x2+4x+4)-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
d/ x2-2xy+y2-16
=(x2-2xy+y2)-16
=(x-y)2-16
=(x-y-4)(x-y+4)
Câu 3:
a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)
b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)
\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)
c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)
d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)
e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)
1) Ta có: \(4x^2-1=\left(2x+1\right).\left(3x-5\right)\)
\(\Leftrightarrow\left(2x+1\right).\left(2x-1\right)-\left(2x+1\right).\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right).\left[\left(2x-1\right)-\left(3x-5\right)\right]=0\)
\(\Leftrightarrow\left(2x+1\right).\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right).\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\-x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=4\)
2) Ta có: \(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-\left[2.\left(x-1\right)\right]^2=0\)
\(\Leftrightarrow\left[\left(x+1\right)+2.\left(x-1\right)\right].\left[\left(x+1\right)-2.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1+2x-2\right).\left(x+1-2x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right).\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(TM\right)\\x=3\left(TM\right)\end{matrix}\right.\)
Vậy \(x=\frac{1}{3}\) hoặc \(x=3\)
3) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x.\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-x+6x-3\right)=0\)
\(\Leftrightarrow x.\left[x.\left(2x-1\right)+3.\left(2x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x+3\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(TM\right)\\x=-\frac{1}{2}\left(TM\right)\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=-3\) hoặc \(x=-\frac{1}{2}\)
4) Ta có: \(2x=3x-2\)
\(\Leftrightarrow2x-3x=-2\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
5) Ta có: \(x+15=3x-1\)
\(\Leftrightarrow x-3x=-1-15\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(TM\right)\)
Vậy \(x=8\)
6) Ta có: \(2-x=0,5x-4\)
\(\Leftrightarrow-x-0,5x=-4-2\)
\(\Leftrightarrow-1,5x=-6\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy \(x=4\)
1) 4x2-1=(2x+1)(3x-5)
<=> (2x-1)(2x+1)-(2x+1)(3x-5)=0
<=> (2x+1)(2x-1-3x+5)=0
<=> (2x+1)(4-x)=0
<=>\([^{2x+1=0}_{4-x=0}< =>[^{2x=-1}_{x=4}< =>[^{x=\frac{-1}{2}}_{x=4}\)
2) (x+1)2= 4(x2-2x+1)
<=> x2+2x+1-4(x2-2x+1)=0
<=> x2+2x+1-4x2+8x-4=0
<=> -3x2+10x-3=0
<=> -3x2+x+9x-3=0
<=> -x(3x-1)+3(3x-1)=0
<=> (3x-1)(3-x)=0
<=> \([^{3x-1=0}_{3-x=0}< =>[^{3x=1}_{x=3}< =>[^{x=\frac{1}{3}}_{x=3}\)
3) 2x3+5x2-3x=0
<=> 2x(x2+\(\frac{5}{2}x-\frac{3}{2})=0\)
<=> 2x\(\left[x^2+2.\frac{5}{4}x+\frac{25}{16}-\left(\frac{25}{16}+\frac{3}{2}\right)\right]=0\)
<=> 2x\(\left[\left(x+\frac{5}{4}\right)^2-\frac{49}{16}\right]=0\)
<=> 2x\(\left(x+\frac{5}{4}-\frac{7}{4}\right)\left(x+\frac{5}{4}+\frac{7}{4}\right)=0\)
<=> x\(\left(x-\frac{1}{2}\right)\left(x+3\right)=0\)
<=>\(\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-3\end{matrix}\right.\)
4) 2x=3x-2
<=> 2x-3x=-2
<=> -x=-2
<=> x=2
5) x+15=3x-1
<=> x-3x=1-15
<=> -2x=-14
<=> x=-14:-2
<=> x=7
6) 2-x=0,5x-4
<=> -x-0,5x=-4-2
<=> -1,5x=-6
<=> x= -6: -1,5
<=> x=4
học tốt nghen
1,4x2.(5x3+2x-1)
=4x2.5x3+4x2.2x-4x2.1
20x5+8x3-4x2
2,4x3y2:x2
=4xy2
3,(15x2y3-10x3y3+6xy):5xy
15x2y3:5xy-10x3y3:5xy+6xy:5xy
3xy2-2x2y2+\(\dfrac{6}{5}\)