Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)
= \(\frac{-78}{143}+\frac{7}{22}\)= \(\frac{-6}{11}+\frac{7}{22}\)= \(\frac{-12}{22}+\frac{7}{22}\)
= \(\frac{-5}{22}\)
b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)= \(\frac{-4}{5}-\frac{221}{170}\)
\(\frac{-4}{5}-\frac{13}{10}\)= \(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)
\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)
\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)
\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)
\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)
\(=\frac{2-\frac{3}{4}}{4}\)
\(=\frac{1}{2.4}\)
\(=\frac{1}{8}\)
b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)
\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)
\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)
\(=\frac{16056050}{8028025}\)
= 2
c )
\(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{3}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{5}{3}}}=1+\frac{1}{1+\frac{1}{\frac{8}{3}}}=1+\frac{1}{\frac{11}{8}}=\frac{19}{11}\)
\(B=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{41.45}\)
\(4B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{41}-\frac{1}{45}\)
\(4B=\frac{44}{45}\)
\(B=\frac{11}{45}\)
\(B=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{41.45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
ta có: x-y-z=0
=> x=y+z
y=x-z
-z=y-x
thay vào biểu thức B ta có: \(B=\left(1-\frac{z}{x}\right)\)\(\left(1-\frac{x}{y}\right)\)\(\left(1+\frac{y}{z}\right)\)
= \(\left(\frac{x-z}{x}\right)\)\(\left(\frac{y-x}{y}\right)\)\(\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)=-1
vậy B=-1