K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay x=-1 vào (P), ta được:

\(y=\left(-1\right)^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Vậy: M(-1;1) và N(2;4)

Gọi (d):y=ax+b là ptđt đi qua hai điểm M và N

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\-a+b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy: (d): y=x+2

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0

a: ĐKXĐ: \(\left\{{}\begin{matrix}5x+3>=0\\x>=0\end{matrix}\right.\Leftrightarrow x>=0\)

b: Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot4=2\)

Vậy: D(-2;2)

15 tháng 4 2019

ai giải bài này giùm với 

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014