\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\) là (x;y) =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

ta co1:(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y

mà (x-3)^2012+(3y-12)^2014 < 0(theo đề bài)

=>(x-3)^2012+(3y-12)^2014 =0
=>(x-3)^2012=0;(3y-12)^2014=0

=>x=3;y=4


 

14 tháng 8 2016

Vì \(\left(x-3\right)^{2012}\ge0\)

\(\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\hept{\begin{cases}3y-12=0\\x-3=0\end{cases}}\)\(\hept{\begin{cases}y=4\\x=3\end{cases}}\)

Vậy cặp( x,y) cần tìm là (3,4)

14 tháng 8 2016

2 số hạng đều có số mũ chẵn nên chúng luôn lớn hơn hoặc=0

Vậy ta suy ra được cả 2 số đều bằng 0

Có (x-3)2012=0  =>x-3=0  =>x=3

Có ( 3y-12)2014=0  =>3y-12=0   =>3y=12  =>y=4

Vậy x=3, y=4

22 tháng 10 2015

Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)

\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)

mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)

\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)

Vậy x=3,y=4

1 tháng 12 2015

ta có:

(x-3)^2012 > 0 với mọi x

(3y-12)^2014 > 0 với mọi y

=>(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y

mà theo đề:(x-3)^2012+(3y-12)^2014 < 0

=>(x-3)^2012=(3y-12)^2014=0

=>x-3=3y-12=0

=>x=3;y=4

vậy (x;y)=(3;4)

tick nhé,bài chuẩn đấy

4 tháng 1 2016

Ta có : \(\left(x-3\right)^{2012}\ge0\)  với mọi x

             \(\left(3y-12\right)^{2014}\ge0\) với mọi y

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)  Với mọi x, y

Để \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=> \(\left(x-3\right)^{2012}=0\)               Và   \(\left(3y-12\right)^{2014}=0\)

=> \(x-3=0\)                                 Và     \(3y-12=0\)

=> \(x=3\)                                               Và     \(3y=12\)

=> \(x=3\)                                               Và     \(y=4\)

Vậy cặp số (x;y) thỏa mãn là (3;4)

4 tháng 1 2016

478

Mấy đại ca làm ơn tick giùm em 8 cái em đang rất cần

4 tháng 10 2015

vì: số  mũ của cả 2 là số chẵn mà x2012 + x2014 \(\ge0\)

=> ( x - 3 )2012 + ( 3y - 12 )2014 \(\ge0\)

mà đề cko là bé hơn hoặc = 0 => ( x - 3 )2012 + ( 3y - 12 )2014  = 0

Vì ko có số đối => ( x - 3 )2012 = 0 và ( 3y - 12 )2014  = 0

để: x - 3 = 0 => x = 3

3y - 12 = 0

3y = 12

 y = 4

=> cặp x;y thỏa mãn là: (3;4)

3 tháng 3 2019

\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)

Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)

\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)

Vậy....

23 tháng 3 2016

2x-5 = 0 

=>x = 5/2

3y+4 = 0

=>y=-4/3

31 tháng 5 2015

b) Nhận xét: (2x - 5)2012 \(\ge\) 0 với mọi x

                  (3y + 4)2014 \(\ge\) 0 với mọi x

=>  (2x - 5)2012 +   (3y + 4)2014 \(\ge\) 0 với mọi x

Mà (2x - 5)2012 +   (3y + 4)2014 \(\le\) 0

=> (2x - 5)2012 +   (3y + 4)2014  = 0 

<=> (2x - 5)2012 =  (3y + 4)2014 = 0

<=> 2x - 5 = 0 và 3y + 4 = 0

+) 2x - 5 = 0 => x = 5/2

+) 3y + 4 = 0 => y = -4/3

Vậy.............

31 tháng 5 2015

a) Ta có : \(x\left(x-y\right)=\frac{3}{10}\Leftrightarrow\left(x-y\right)=\frac{3}{10.x}\) .

Ta lại có : \(y\left(x-y\right)=\frac{-3}{50}\Leftrightarrow\left(x-y\right)=\frac{-3}{50.y}\) .

\(\Rightarrow\left(x-y\right)=\frac{3}{10.x}=\frac{-3}{50.y}\Rightarrow3.50.y=-3.10.x\) .

\(\Rightarrow150.y=-30.x\Leftrightarrow\frac{x}{y}=\frac{150}{-30}=-5\).

\(\Rightarrow x-y=-5\) .

\(x.\left(-5\right)=\frac{3}{10}\Rightarrow x=-\frac{3}{50}\) .

\(y.\left(-5\right)=\frac{-3}{50}\Rightarrow y=\frac{3}{250}\).

b) \(Do:\) \(\left(2x-5\right)^{2012}\) là mũ chẵn \(\Rightarrow\left(2x-5\right)^{2012}\ge0\) .

Do : \(\left(3y+4\right)^{2014}\) cũng là mũ chẵn \(\Rightarrow\left(3y+4\right)^{2014}\ge0\) .

Để : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)

\(\Leftrightarrow\left(2x-5\right)=0\Leftrightarrow x=5:2=\frac{5}{2}\).

\(\Leftrightarrow3y+4=0\Leftrightarrow y=-4:3=\frac{-4}{3}\) .