Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Hướng dẫn giải.
Ta có: u 5 = u 1 + 4 d = 3 + 4 . ( - 2 ) = - 5 .
Chọn D
Đáp án đúng là: D
Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.
\(\left\{{}\begin{matrix}u_1+u_1+6d=8\\u_1+3d+u_1+4d=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u_1+6d=8\\2u_1+7d=11\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-5\end{matrix}\right.\)
\(S=u_1+7d+u_1+9d+...+u_1+35d\)
\(S=15u_1+\left(7+9+...+35\right)d=15u_1+308d=849\)
a) Cấp số cộng có: \({u_1} = 4,\) công sai \(d = 5\)
Số hạng tổng quát của dãy số là: \({u_n} = 4 + 5\left( {n - 1} \right) = 5n- 1\)
Số hạng thứ 5: \({u_5} = 5.5- 1 = 24\)
Số hạng thứ 100: \({u_{100}} = 5.100- 1 = 499\)
b) Cấp số cộng có: \({u_1} = 1,\) công sai \(d = - 2\)
Số hạng tổng quát của dãy số là: \({u_n} = 1 + \left( { - 2} \right)\left( {n - 1} \right) = -2n+3\)
Số hạng thứ 5: \({u_5} = (-2).5+3 = - 7\)
Số hạng thứ 100: \({u_{100}} = (-2).100+3 = - 197\)
Phương pháp
Cấp số cộng ( u n ) có số hạng đầu u1 và công sai d thì số hạng thứ n là
u n = u 1 + ( n - 1 ) d
Cách giải:
Gọi 198 là số hạng thứ n của dãy.
Ta có: 198 = u 1 + ( n - 1 ) d = - 2 + ( n - 1 ) . 5
⇔ 5 n = 205 ⇔ n = 41
Chọn D.
Đáp án B