Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: căn bậc hai của một số a không âm là một số x thỏa mãn \(x^2=a\)
b: Căn bậc hai của một số a bất kỳ là một số x sao cho x thỏa mãn \(x^3=a\)
\(M=\lim\limits\left(\sqrt[3]{1-n^2-8n^3}+2n\right)\)
\(=\lim\limits\dfrac{1-n^2-8n^3+8n^3}{\left(\sqrt[3]{1-n^2-8n^3}\right)^2-2n.\sqrt[3]{1-n^2-8n^3}+4n^2}\)
\(=\lim\limits\dfrac{1-n^2}{\left(1-n^2-8n^3\right)^{\dfrac{2}{3}}-2n.\left(1-n^2-8n^3\right)^{\dfrac{1}{3}}+4n^2}\)
\(=\lim\limits\dfrac{-\dfrac{n^2}{n^2}}{\dfrac{\left(-8n^3\right)^{\dfrac{2}{3}}}{n^2}-\dfrac{2n.\left(-8n^3\right)^{\dfrac{1}{3}}}{n^2}+\dfrac{4n^2}{n^2}}=\dfrac{-1}{4+4+4}=-\dfrac{1}{12}\)
\(\lim\limits_{x\rightarrow8}\dfrac{x^2-8x}{2-\sqrt[3]{x}}=\lim\limits_{x\rightarrow8}\dfrac{x\left(x-8\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{8-x}\)
\(=\lim\limits_{x\rightarrow8}-x\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)\)
\(=-8\left(4+2\sqrt[3]{8}+\sqrt[3]{8^2}\right)=-96\)
a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)
b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)
c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)
d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))
Lạ nhỉ, tui chả biết dạng này dạng gì nữa :D
\(\lim\limits\dfrac{\left(n+1\right)\left(\sqrt{3n^2+2}+\sqrt{3n^2-1}\right)}{n^2\left(3n^2+2-3n^2+1\right)}=\lim\limits\dfrac{\left(\dfrac{n}{n}+\dfrac{1}{n}\right)\left(\sqrt{\dfrac{3n^2}{n^2}+\dfrac{2}{n^2}}+\sqrt{\dfrac{3n^2}{n^2}-\dfrac{1}{n^2}}\right)}{3n^2}=\dfrac{2\sqrt{3}}{3}=\dfrac{2}{\sqrt{3}}\)
ko hiểu
bạn rảnh à? viết hàng đống chữ số ra đấy r bạn nghĩ ai giải đc cho bn ._.