Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-4\)
\(\Rightarrow-3a-2=-4\)
\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)
b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)
\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)
\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)
\(\Rightarrow6a^2-6=6a^2+20a+6\)
\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
A=a^4 -2a^3 + 3a^2 -4a+5
A=(a^4 -2a^3 +a^2)+(2a^2 -4a+2)+3
A=(a^2 -a)^2 +2(a^2 -2a+1)+3
A=((a^2 -a)^2 +2(a-1)^2 +3
Vì (a^2 -a)^2 +2(a-1)^2 +3 >hoặc=3 với mọi a.Dấu"=" xảy ra khi a=1
Hay:A>hoặc=3.Dấu"=" xảy ra khi a=1
Vậy giá trị nhỏ nhất A=3 tại a=1. Bạn nhớ nếu nó hỏi Min thì mới kết luận là Min còn hỏi GTNN thì kết luận GTNN.
2
a
\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)
Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)
3
\(3a^2+4b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+4b^2=0\)
\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)
\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)
Làm nốt