Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 4 = 3n - 6 + 10
= 3(n - 2) + 10
Để (3n + 4) ⋮ (n - 2) thì 10 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}
⇒ n ∈ {-8; -3; 0; 1; 3; 4; 7; 12}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 7; 12}
b: \(X=\overline{abcd}=100\overline{ab}+\overline{cd}\)
X chia hết cho 99
=>\(100\overline{ab}+\overline{cd}⋮99\)
=>\(99\overline{ab}+\overline{ab}+\overline{cd}⋮99\)
mà \(99\overline{ab}⋮99\)
nên \(\overline{ab}+\overline{cd}⋮99\)
chứng minh trường hợp ngược lại:
\(\overline{ab}+\overline{cd}⋮99\)
\(\Leftrightarrow\overline{ab}+\overline{cd}+99\overline{ab}⋮99\)
=>\(100\overline{ab}+\overline{cd}⋮99\)
=>\(\overline{abcd}⋮99\)
a:
Đặt \(A=\overline{123x43y}\)
A chia hết cho 5 nên y=0 hoặc y=5
TH1: y=0
A chia hết cho 3
=>\(1+2+3+x+4+3+y⋮3\)
=>\(x+13⋮3\)
=>\(x\in\left\{2;5;8\right\}\)
TH2: y=5
A chia hết cho 3
=>\(x+y+13⋮3\)
=>\(x+5+13⋮3\)
=>\(x+18⋮3\)
=>\(x\in\left\{0;3;6;9\right\}\)
Ta có \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\)
=\(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\))
=\(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{49.50}\))
=\(\dfrac{1}{2}\).(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).(\(1-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).\(\dfrac{50}{51}\)
=\(\dfrac{25}{51}\)
Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{49\cdot51}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{50}{51}=\dfrac{25}{51}\)
Câu 2:
1: \(\Leftrightarrow x\cdot\dfrac{7}{2}=\dfrac{9}{2}+3=\dfrac{15}{2}\)
hay x=15/7
2: \(\Leftrightarrow x=\dfrac{5}{2}\cdot\dfrac{8}{5}=4\)
3: \(\Leftrightarrow x=\dfrac{-11\cdot10}{5}=-11\cdot2=-22\)
4: =>2x=90
hay x=45
a: 4/25=16/100
-7/4=-175/100
9/50=18/100
b: -7/10=-28/40
11/20=22/40
-10/40=-10/40
c: 5/18=10/36
7/12=21/36
11/6=66/36
a: ƯCLN(a,b)=4
=>\(\left\{{}\begin{matrix}a=4x\\b=4y\end{matrix}\right.\left(x,y\in Z^+\right)\)
a+b=32
=>4x+4y=32
=>x+y=8
mà x,y là các số nguyên dương
nên \(\left(x,y\right)\in\left\{\left(1;7\right);\left(2;6\right);\left(3;5\right);\left(4;4\right);\left(5;3\right);\left(6;2\right);\left(7;1\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;28\right);\left(8;24\right);\left(12;20\right);\left(16;16\right);\left(20;12\right);\left(24;8\right);\left(28;4\right)\right\}\)
mà ƯCLN(a,b)=4
nên \(\left(a,b\right)\in\left\{\left(4;28\right);\left(12;20\right);\left(20;12\right);\left(28;4\right)\right\}\)
b: ƯCLN(a,b)=8
=>\(\left\{{}\begin{matrix}a=8c\\b=8d\end{matrix}\right.\left(c,d\in Z^+\right)\)
a+b=40
=>8c+8d=40
=>8(c+d)=40
=>c+d=5
mà c,d là các số nguyên dương
nên \(\left(c,d\right)\in\left\{\left(1;4\right);\left(4;1\right);\left(2;3\right);\left(3;2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(8;32\right);\left(32;8\right);\left(16;24\right);\left(24;16\right)\right\}\)
c: ƯCLN(a,b)=2
=>\(\left\{{}\begin{matrix}a=2e\\b=2f\end{matrix}\right.\left(e,f\in Z^+\right)\)
a*b=24
=>\(2\cdot e\cdot2\cdot f=24\)
=>\(4\cdot e\cdot f=24\)
=>\(e\cdot f=6\)
mà e,f là các số nguyên dương
nên \(\left(e,f\right)\in\left\{\left(1;6\right);\left(2;3\right);\left(3;2\right);\left(6;1\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(2;12\right);\left(4;6\right);\left(6;4\right);\left(12;2\right)\right\}\)
ƯCLN (a,b) = 8
a = 8x
b = 8y
Mà a + b = 32
Nên 8x + 8y = 32
8(x + y) = 32
x + y = 32 : 8
x + y = 4
Do đó, ta có bảng sau :
x | 0 | 1 | 2 | 3 | 4 |
y | 4 | 3 | 2 | 1 | 0 |
a | 0 | 8 | 16 | 24 | 32 |
b | 32 | 24 | 16 | 8 | 0 |
Vậy a ; b = 0 ; 32
a ; b = 8 ; 24
a ; b = 16 ; 16
a ; b = 24 ; 8
a ; b = 32 ; 0
em thấy trên web khác có bạn làm thế này í ah (nếu ƯCLN(a,b)=8
c: \(\left(-\dfrac{2}{3}\right)^3-\dfrac{1}{9}\cdot\dfrac{12}{-18}-4\cdot\dfrac{-3}{24}\)
\(=-\dfrac{8}{27}+\dfrac{1}{9}\cdot\dfrac{2}{3}+4\cdot\dfrac{3}{24}\)
\(=-\dfrac{8}{27}+\dfrac{2}{27}+4\cdot\dfrac{1}{8}\)
\(=-\dfrac{6}{27}+\dfrac{1}{2}=\dfrac{-2}{9}+\dfrac{1}{2}=\dfrac{-4+9}{18}=\dfrac{5}{18}\)
d: \(\left(-\dfrac{4}{5}\right)^2-\dfrac{-19}{45}\cdot\dfrac{-18}{38}-\left(-\dfrac{2}{3}\right)^2\)
\(=\dfrac{16}{25}-\dfrac{19}{45}\cdot\dfrac{18}{38}-\dfrac{4}{9}\)
\(=\dfrac{16}{25}-\dfrac{4}{9}-\dfrac{19}{38}\cdot\dfrac{18}{45}\)
\(=\dfrac{144-100}{225}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)
\(=\dfrac{44}{225}-\dfrac{1}{5}=\dfrac{44-45}{225}=-\dfrac{1}{225}\)
e: \(\dfrac{-1}{4}\cdot\dfrac{-2}{5}-3\cdot\left(-\dfrac{2}{5}\right)^2-\left(-\dfrac{1}{3}\right)^3\)
\(=\dfrac{1}{2\cdot5}-3\cdot\dfrac{4}{25}+\dfrac{1}{27}\)
\(=\dfrac{1}{10}-\dfrac{12}{25}+\dfrac{1}{27}=\dfrac{-463}{1350}\)
g: \(\dfrac{2}{-4^2}-\dfrac{14}{19}\cdot\dfrac{-38}{7}-3\cdot\left(-\dfrac{2}{5}\right)^2\)
\(=\dfrac{-2}{16}+\dfrac{14}{7}\cdot\dfrac{38}{19}-3\cdot\dfrac{4}{25}\)
\(=-\dfrac{1}{8}+4-\dfrac{12}{25}=\dfrac{679}{200}\)
h: \(\dfrac{-3}{4}\cdot\dfrac{-8}{27}-\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{4}{5}\right)-\left(-2\right)^3\)
\(=\dfrac{3}{27}\cdot\dfrac{8}{4}-\dfrac{1}{2}\cdot\dfrac{4}{5}+8\)
\(=\dfrac{2}{9}-\dfrac{2}{5}+8=\dfrac{352}{45}\)