K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(\left(-\dfrac{2}{3}\right)^3-\dfrac{1}{9}\cdot\dfrac{12}{-18}-4\cdot\dfrac{-3}{24}\)

\(=-\dfrac{8}{27}+\dfrac{1}{9}\cdot\dfrac{2}{3}+4\cdot\dfrac{3}{24}\)

\(=-\dfrac{8}{27}+\dfrac{2}{27}+4\cdot\dfrac{1}{8}\)

\(=-\dfrac{6}{27}+\dfrac{1}{2}=\dfrac{-2}{9}+\dfrac{1}{2}=\dfrac{-4+9}{18}=\dfrac{5}{18}\)

d: \(\left(-\dfrac{4}{5}\right)^2-\dfrac{-19}{45}\cdot\dfrac{-18}{38}-\left(-\dfrac{2}{3}\right)^2\)

\(=\dfrac{16}{25}-\dfrac{19}{45}\cdot\dfrac{18}{38}-\dfrac{4}{9}\)

\(=\dfrac{16}{25}-\dfrac{4}{9}-\dfrac{19}{38}\cdot\dfrac{18}{45}\)

\(=\dfrac{144-100}{225}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)

\(=\dfrac{44}{225}-\dfrac{1}{5}=\dfrac{44-45}{225}=-\dfrac{1}{225}\)

e: \(\dfrac{-1}{4}\cdot\dfrac{-2}{5}-3\cdot\left(-\dfrac{2}{5}\right)^2-\left(-\dfrac{1}{3}\right)^3\)

\(=\dfrac{1}{2\cdot5}-3\cdot\dfrac{4}{25}+\dfrac{1}{27}\)

\(=\dfrac{1}{10}-\dfrac{12}{25}+\dfrac{1}{27}=\dfrac{-463}{1350}\)

g: \(\dfrac{2}{-4^2}-\dfrac{14}{19}\cdot\dfrac{-38}{7}-3\cdot\left(-\dfrac{2}{5}\right)^2\)

\(=\dfrac{-2}{16}+\dfrac{14}{7}\cdot\dfrac{38}{19}-3\cdot\dfrac{4}{25}\)

\(=-\dfrac{1}{8}+4-\dfrac{12}{25}=\dfrac{679}{200}\)

h: \(\dfrac{-3}{4}\cdot\dfrac{-8}{27}-\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{4}{5}\right)-\left(-2\right)^3\)

\(=\dfrac{3}{27}\cdot\dfrac{8}{4}-\dfrac{1}{2}\cdot\dfrac{4}{5}+8\)

\(=\dfrac{2}{9}-\dfrac{2}{5}+8=\dfrac{352}{45}\)

23 tháng 2 2023

23 tháng 10 2023

3n + 4 = 3n - 6 + 10

= 3(n - 2) + 10

Để (3n + 4) ⋮ (n - 2) thì 10 ⋮ (n - 2)

⇒ n - 2 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}

⇒ n ∈ {-8; -3; 0; 1; 3; 4; 7; 12}

Mà n là số tự nhiên

⇒ n ∈ {0; 1; 3; 4; 7; 12}

15 tháng 3 2022

Câu 6: D

Câu 7: B

29 tháng 10 2023

b: \(X=\overline{abcd}=100\overline{ab}+\overline{cd}\)

X chia hết cho 99

=>\(100\overline{ab}+\overline{cd}⋮99\)

=>\(99\overline{ab}+\overline{ab}+\overline{cd}⋮99\)

mà \(99\overline{ab}⋮99\)

nên \(\overline{ab}+\overline{cd}⋮99\)

chứng minh trường hợp ngược lại:

\(\overline{ab}+\overline{cd}⋮99\)

\(\Leftrightarrow\overline{ab}+\overline{cd}+99\overline{ab}⋮99\)

=>\(100\overline{ab}+\overline{cd}⋮99\)

=>\(\overline{abcd}⋮99\)

a:

Đặt \(A=\overline{123x43y}\)

A chia hết cho 5 nên y=0 hoặc y=5

TH1: y=0

A chia hết cho 3

=>\(1+2+3+x+4+3+y⋮3\)

=>\(x+13⋮3\)

=>\(x\in\left\{2;5;8\right\}\)

TH2: y=5

A chia hết cho 3

=>\(x+y+13⋮3\)

=>\(x+5+13⋮3\)

=>\(x+18⋮3\)

=>\(x\in\left\{0;3;6;9\right\}\)

Ta có \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\)

         =\(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\))

         =\(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{49.50}\))

         =\(\dfrac{1}{2}\).(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\))

         =\(\dfrac{1}{2}\).(\(1-\dfrac{1}{51}\))

         =\(\dfrac{1}{2}\).\(\dfrac{50}{51}\)

         =\(\dfrac{25}{51}\)

Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{49\cdot51}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{50}{51}=\dfrac{25}{51}\)

Câu 2: 

1: \(\Leftrightarrow x\cdot\dfrac{7}{2}=\dfrac{9}{2}+3=\dfrac{15}{2}\)

hay x=15/7

2: \(\Leftrightarrow x=\dfrac{5}{2}\cdot\dfrac{8}{5}=4\)

3: \(\Leftrightarrow x=\dfrac{-11\cdot10}{5}=-11\cdot2=-22\)

4: =>2x=90

hay x=45

a: 4/25=16/100

-7/4=-175/100

9/50=18/100

b: -7/10=-28/40

11/20=22/40

-10/40=-10/40

c: 5/18=10/36

7/12=21/36

11/6=66/36

a: ƯCLN(a,b)=4

=>\(\left\{{}\begin{matrix}a=4x\\b=4y\end{matrix}\right.\left(x,y\in Z^+\right)\)

a+b=32

=>4x+4y=32

=>x+y=8

mà x,y là các số nguyên dương

nên \(\left(x,y\right)\in\left\{\left(1;7\right);\left(2;6\right);\left(3;5\right);\left(4;4\right);\left(5;3\right);\left(6;2\right);\left(7;1\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(4;28\right);\left(8;24\right);\left(12;20\right);\left(16;16\right);\left(20;12\right);\left(24;8\right);\left(28;4\right)\right\}\)

mà ƯCLN(a,b)=4

nên \(\left(a,b\right)\in\left\{\left(4;28\right);\left(12;20\right);\left(20;12\right);\left(28;4\right)\right\}\)

b: ƯCLN(a,b)=8

=>\(\left\{{}\begin{matrix}a=8c\\b=8d\end{matrix}\right.\left(c,d\in Z^+\right)\)

a+b=40

=>8c+8d=40

=>8(c+d)=40

=>c+d=5

mà c,d là các số nguyên dương

nên \(\left(c,d\right)\in\left\{\left(1;4\right);\left(4;1\right);\left(2;3\right);\left(3;2\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(8;32\right);\left(32;8\right);\left(16;24\right);\left(24;16\right)\right\}\)

c: ƯCLN(a,b)=2

=>\(\left\{{}\begin{matrix}a=2e\\b=2f\end{matrix}\right.\left(e,f\in Z^+\right)\)

a*b=24

=>\(2\cdot e\cdot2\cdot f=24\)

=>\(4\cdot e\cdot f=24\)

=>\(e\cdot f=6\)

mà e,f là các số nguyên dương

nên \(\left(e,f\right)\in\left\{\left(1;6\right);\left(2;3\right);\left(3;2\right);\left(6;1\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(2;12\right);\left(4;6\right);\left(6;4\right);\left(12;2\right)\right\}\)

ƯCLN (a,b) = 8

a = 8x

b = 8y

Mà a + b = 32

Nên 8x + 8y = 32

8(x + y) = 32

x + y = 32 : 8

x + y = 4

Do đó, ta có bảng sau :

x01234
y43210
a08162432
b32241680

Vậy a ; b = 0 ; 32

a ; b = 8 ; 24

a ; b = 16 ; 16

a ; b = 24 ; 8

a ; b = 32 ; 0

em thấy trên web khác có bạn làm thế này í ah (nếu ƯCLN(a,b)=8