Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì CA = CM ( tc tiếp tuyến cắt nhau )
OA = OM = R
=> OC là đường trung trực đoạn AM
=> OC vuông AM
^AMB = 900 ( góc nội tiếp chắn nửa đường tròn )
=> AM vuông MB (1)
Ta có : DM = DB ( tc tiếp tuyến cắt nhau )
OM = OB = R
=> OD là đường trung trực đoạn MB
=> OD vuông MB (2)
Từ (1) ; (2) => OD // AM
b, OD giao MB = {T}
OC giao AM = {U}
Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900
=> tứ giác OUMT là hcn => ^UOT = 900
Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900
Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau )
CM = AC ( tc tiếp tuyến cắt nhau )
Xét tam giác COD vuông tại O, đường cao OM
Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD
c, Gọi I là trung điểm CD
O là trung điểm AB
khi đó OI là đường trung bình hình thang BDAC
=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB
Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R
Vậy AB là tiếp tuyến đường tròn (I;CD/2)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )
Xét tam giác COQ có: \(EM//OQ\)
\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let ) (1)
Xét tam giác COP có: \(AE//OP\)
\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2)
Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM
\(\Rightarrow OQ=OP\)
Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ C, đáy \(OP=\frac{PQ}{2}\)
\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)
Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)
Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:
\(OA^2=CA.AP\)
Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )
Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)
\(\Rightarrow PC^2\ge4OA^2\)
\(\Rightarrow PC\ge2OA=2R\)
\(\Rightarrow S_{\Delta COP}\ge R^2\)
\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)
Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)
Mà tam giác COP vuông tại O có đường cao OA
\(\Rightarrow AC=AP=OA=R\)
Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:
\(AC^2+AO^2=OC^2\)
\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)
Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất
Bài 1:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi