Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng 2:
a) \(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha\)
b) \(\sin\alpha-\sin\alpha\cdot\cos^2\alpha=\sin\alpha\left(1-\cos^2\alpha\right)=\sin^3\alpha\)
c) Ta có: \(\sin^4\alpha+\cos^4\alpha+2\cdot\sin^2\alpha\cdot\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2\)
\(=1^2=1\)
d) Ta có: \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
\(=\tan^2\alpha\left(1-\sin^2\alpha\right)\)
\(=\tan^2\alpha\cdot\cos^2\alpha\)
\(=\dfrac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\)
\(B=\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}\)
\(=\dfrac{\sqrt{3}+2-\left(\sqrt{3}-2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\)
\(=\dfrac{\sqrt{3}+2-\sqrt{3}+2}{3-4}=\dfrac{4}{-1}=-4\)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{5}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}=-\sqrt{3}\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)
Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ
\(\Rightarrow\) Phương trình đã cho vô nghiệm
36B
37C
38D
39B
40D
41A
42B
43B
44A
45B
46B
47A
48C
50B
51B
52B
53D
54C
55D
56C
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16