K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1

a: \(AB=\sqrt{CA^2+CB^2}=25\left(cm\right)\)

Xét ΔABC vuông tại C có sin A=BC/BA=4/5

nên góc A\(\simeq\)53 độ

=>góc B=90-53=37 độ

ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*25=15*20=300

=>CH=12(cm)

b: ΔHCA vuông tại H có HE là đường cao

nên CE*CA=CH^2

ΔCHB vuông tại H có FH là đường cao

nên CF*CB=CH^2

=>CE*CA=CF*CB

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)