K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cần gấp ! Helppppppppp ! 

Bài 1: Cho hai hàm số Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Tìm tập xác định của hàm số đã cho

    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)

Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)

Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:

    a) y = f(x) = (1 - √2)x + 1, với x ∈ R

    b) Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án với x ≥ 2

    c) y = f(x) = x2 + 2,với x < 0

Bài 4: Cho hàm số y = (2m + 1)x - m + 3

    a) Tìm m biết đồ thị đi qua điểm A(-2; 3)

    b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

Bài 5: Xác định đường thẳng đi qua hai điểm A(-2; 0) và B(0; 3)

 

Bài 6: Với giá trị nào của m thì đồ thị các hàm số y = 2x + 4 - m và y = 3x + m - 2 cắt nhau tại một điểm trên trục tung

Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2

    a) Xác định giá trị của m để hàm số đồng biến, nghịch biến

    b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.

Bài 8: Cho hai đường thẳng

    (d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m

    Xác định m để giao điểm của (d1 ) và (d2 ) thỏa mãn

    a) Nằm trên trục tung

    b) Nằm bên trái trục tung

    c) Nằm trong góc phần tư thứ hai.

Bài 9: Cho đường thẳng (d):y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.

0
Bài 1: Cho hai hàm số     a) Tìm tập xác định của hàm số đã cho    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:    a) y = f(x) = (1 - √2)x + 1, với x ∈ R    b)  với x ≥ 2    c) y = f(x) = x2 + 2,với x < 0Bài 4: Cho hàm số y = (2m + 1)x - m + 3    a) Tìm m biết đồ thị đi qua...
Đọc tiếp

Bài 1: Cho hai hàm số Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Tìm tập xác định của hàm số đã cho

    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)

Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)

Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:

    a) y = f(x) = (1 - √2)x + 1, với x ∈ R

    b) Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án với x ≥ 2

    c) y = f(x) = x2 + 2,với x < 0

Bài 4: Cho hàm số y = (2m + 1)x - m + 3

    a) Tìm m biết đồ thị đi qua điểm A(-2; 3)

    b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

Bài 5: Xác định đường thẳng đi qua hai điểm A(-2; 0) và B(0; 3)

 

Bài 6: Với giá trị nào của m thì đồ thị các hàm số y = 2x + 4 - m và y = 3x + m - 2 cắt nhau tại một điểm trên trục tung

Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2

    a) Xác định giá trị của m để hàm số đồng biến, nghịch biến

    b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.

Bài 8: Cho hai đường thẳng

    (d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m

    Xác định m để giao điểm của (d1 ) và (d2 ) thỏa mãn

    a) Nằm trên trục tung

    b) Nằm bên trái trục tung

    c) Nằm trong góc phần tư thứ hai.

Bài 9: Cho đường thẳng (d):y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.

2
16 tháng 11 2021

TL ;

Helppppppppppp ! Đang cần gấp

HT

17 tháng 11 2021

TL

1.a: Tập xác định của y=f(x) là D=[2;+)

HT

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời

7 tháng 2 2018

0 bt l m à

19 tháng 9 2021

Tham khảo ạ!

undefined

O là trung điểm của CD

AB đi qua trung điểm của CD nhưng AB không vuông góc với CD

19 tháng 9 2021

Đáp án :

undefined

O là trung điểm của CD

AB đi qua trung điểm của CD nhưng AB không vuông góc với CD

Cre : khoahoc.vietjack.com

21 tháng 8 2021

Ta có:

(sinC) ^ 2 + (cosC) ^ 2 = (AB / BC) ^ 2 + (AC / BC) ^ 2

=(AB ^ 2 + AC ^ 2) / BC ^ 2 = BC ^ 2 / BC ^ 2 = 1

(Vì ABC vuông tại A mà, nên theo pitago)

-->(cosC) ^ 2 = 1 - (sinC) ^ 2 = 1 - 0,8 ^ 2 = 0,36

--> cosC = 0,6 hoặc cosC = - 0,6 (loại vì C là 1 góc nhọn)

Vậy cosC = 0,6

tanC = 0,8 / 0,6 = 4 / 3, cotC = 0,6 / 0,8 = 0,75

26 tháng 5 2015

 268 bài tập bồi dưỡng học sinh giỏi Toán lớp 9So sánh các số thực sau (không dùng máy tính):

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)