Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài:
\(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)
Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)
Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)
Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)
<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)
Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)
<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5)
Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y
=> \(M=9x^4+7x^4-12x^2+4x^2+5\)
\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)
Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)
Với x = 1/2 => (x; y) = ( 1/2; -1/2)
Với x = -1/2 => ( x; y ) = ( -1/2; 1/2)
Vậy min M = 4 đạt tại ....
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a^3+b^3=18\\ab=1\end{cases};a+b=x}\)
Ta có: \(x=a+b\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)\(\Rightarrow x^3=18+3x\Leftrightarrow x^3-3x=18\)(1)
Tương tự: Đặt \(c=\sqrt[3]{3+2\sqrt{2}},d=\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow\hept{\begin{cases}c^3+d^3=6\\cd=1\end{cases};c+d=y}\)
Ta có: \(y=c+d\Leftrightarrow y^3=\left(c+d\right)^3=c^3+d^3+3cd\left(c+d\right)\)\(\Rightarrow y^3=6+3y\)
\(\Leftrightarrow y^3-3y=6\)(2)
Từ (1) và (2) suy ra \(A=x^3-3x+y^3-3y+2020=18+6+2020=2048\)
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
Ta có: \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}x\Leftrightarrow x^3=18+3x\) làm tương tự ⇒ y3 = 9+ 3x
Thay x=..., y=... vào A ta có:
\(A=18+3x+9+3y-3x-3y+2020\)
A= 2047
Châu lớp 8 mà cũng được phết nhỉ