Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5
Theo đề có:
\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)
Tam giác HDC ∼ tam giác HBA nên:
\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)
Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)
\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)
Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
a) tính đường cao AH:
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD
=>DH=AD. sin65
Từ đó suy ra AH theo pitago
hạ đường cao CE từ C xuống cạnh AB
KHi đó CD=EH=AB - 2AH
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H
=>tan HBD= DH/HB=DH/(AB-AH)
=>góc HBD
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H
a) tính đường cao AH:
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD
=>DH=AD. sin65
Từ đó suy ra AH theo pitago
hạ đường cao CE từ C xuống cạnh AB
KHi đó CD=EH=AB - 2AH
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H
=>tan HBD= DH/HB=DH/(AB-AH)
=>góc HBD
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H