Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(M=\dfrac{1}{2}x^3y^4\cdot9x^4y^2=\dfrac{9}{2}x^7y^6\)
Hệ số là 9/2
Bậc là 13
b: KHi x=y=1 thì M=9/2
1: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
a) Do \(\left(3x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(3x-\dfrac{1}{2}\right)^2-4\ge-4\)
\(minA=-4\Leftrightarrow x=\dfrac{1}{6}\)
b) Do \(\left(2x+1\right)^4\ge0\forall x,\left(y-\dfrac{1}{2}\right)^6\ge0\forall y\)
\(\Rightarrow B=\left(2x+1\right)^4+3\left(y-\dfrac{1}{2}\right)^6\ge0\)
\(minB=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
a: \(A=\left(3x-\dfrac{1}{2}\right)^2-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: \(B=\left(2x+1\right)^4+3\left(y-\dfrac{1}{2}\right)^6\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\)
Câu 2:
a: \(=xy^5\cdot\dfrac{1}{4}x^6\cdot\left(-8\right)y^3z^3=-2x^7y^8z^3\)
b: \(f\left(1\right)=3\cdot1^2-4+1=0\)
=>x=1 là nghiệm của f(x)
\(f\left(-\dfrac{1}{3}\right)=3\cdot\dfrac{1}{9}-4\cdot\dfrac{-1}{3}+1=\dfrac{1}{3}+\dfrac{4}{3}+1=\dfrac{8}{3}\)
=>x=-1/3 không là nghiệm của f(x)
Gọi số đó là abcd=m2 (31<m<100) , ta có :
cd=ab.k=>ab.10k=m2 ( 0<k<10 )
Nếu 10k khi phân tích ra thừa số nguyên tố chỉ chứa các thừa số nguyên tố. Mà m2 chia hết cho 10k => m sẽ chia hết cho số 10k.
Mà 0<m<100 nên m không thể chia hết được cho 10k ( loại ).
Khi đó : m sẽ là một trong các số sau 104 ;108.
Nếu 10k=108=>m2 chia hết cho 27.
=>m2 chia hết cho 81.
=>ab chia hết cho 3.
Vì cd=ab.8=>10< ab < 13.Mà ab chia hết cho 3 nên ab = 12.=>cd=96 (t/m).
Nếu 10k = 104 =>m2 chia hết cho 13.
=>m2 chai hết cho 132.
=>ab chai hêt cho 13 mà 0<ab<25.=>ab=13=cd=52 .(loại vì số chính phương không có tận cùng là 2)
Vậy số cần tìm là 1296.
Bài 9:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
c: Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
mà AB<BC(ΔABC vuông tại A)
nên AD<CD
Bài 11:
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔAHD=ΔAKD
=>AH=AK
=>ΔAHK cân tại A
c: Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{CA}\)
nên HK//BC