Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
120 chia y dư 8.
=>112 chia hết cho y.
498 chia y dư 8.
=>490 chia hết cho y.
Mà y lớn nhất nên y bằng ước chung lớn nhất của 120 và 498.
Sau khi phân tích nhân loạn xị ngậu,bấm máy tính,chia 1 cũng bấm,nhân 1 cũng bấm,ta có:
y=14.
Chúc em học tốt^^
120 chia y dư 8.
=>112 chia hết cho y.
498 chia y dư 8.
=>490 chia hết cho y.
Mà y lớn nhất nên y bằng ước chung lớn nhất của 120 và 498.
Sau khi phân tích nhân loạn xị ngậu,bấm máy tính,chia 1 cũng bấm,nhân 1 cũng bấm,ta có:
y=14.
Chúc em học tốt^^
a: \(\left(-256\right)\cdot45-256\cdot56+256\)
\(=256\left(-45-56+1\right)\)
\(=256\left(-100\right)=-25600\)
b: \(\left(-2\right)^3\cdot1975\cdot\left(-4\right)\cdot\left(-5\right)^3\cdot25\)
\(=\left(-8\right)\cdot\left(-125\right)\cdot\left(-4\right)\cdot25\cdot1975\)
\(=1000\cdot\left(-100\right)\cdot1975=-197500000\)
c: \(2076-1976\cdot65-1976\cdot35\)
\(=2076-1976\left(65+35\right)\)
\(=2076-1976\cdot100=2076-197600=-195524\)
d: \(-437-25\cdot78+25\cdot178\)
\(=-437+25\left(178-78\right)\)
\(=-437+2500=2063\)
c/
$C=\frac{11}{2}(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{91.93})$
$=\frac{11}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{93-91}{91.93}\right)$
$=\frac{11}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{91}-\frac{1}{93}\right)$
$=\frac{11}{2}(1-\frac{1}{93})$
$=\frac{11}{2}.\frac{92}{93}=\frac{506}{93}$
d/
$D=5\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{675}\right)$
$=\frac{5}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{675}\right)$
$=\frac{5}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{27-25}{25.27}\right)$
$=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)$
$=\frac{5}{2}\left(1-\frac{1}{27}\right)$
$=\frac{5}{2}.\frac{26}{27}=\frac{65}{27}$
h: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
m: \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
Ta có: \(B=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{10\cdot11}\)
\(=\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{11-10}{10\cdot11}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{11-3}{3\cdot11}=\frac{8}{33}\)
Vậy \(B=\frac{8}{33}\)
o: \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}+\dfrac{1}{11\cdot13}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{1}{2}\cdot\dfrac{10}{39}=\dfrac{5}{39}\)
p: \(\dfrac{1}{2}+\dfrac{1}{14}+\dfrac{1}{35}+\dfrac{1}{65}+\dfrac{1}{104}+\dfrac{1}{152}\)
\(=\dfrac{2}{4}+\dfrac{2}{28}+\dfrac{2}{70}+\dfrac{2}{130}+\dfrac{2}{208}+\dfrac{2}{304}\)
\(=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+\dfrac{2}{7\cdot10}+\dfrac{2}{10\cdot13}+\dfrac{2}{13\cdot16}+\dfrac{2}{16\cdot19}\)
\(=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{16\cdot19}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{16}-\dfrac{1}{19}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{19}\right)=\dfrac{2}{3}\cdot\dfrac{18}{19}=\dfrac{2\cdot6}{19}=\dfrac{12}{19}\)