Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\) (1)
\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\) (2)
Từ (1) và (2) => x = y
b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\) (1)
\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)
Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)
(1),(2),(3) => \(x>y\)
a) x = \(\sqrt{7}\)
b) x = + - căn 10
c) x = căn 14
d) x bằng 2 / căn 3
e) x = 1 / căn 8
f) x = 1 - căn 2 / 2
1,
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\\ Vì\left\{{}\begin{matrix}\left|x+1\right|\ge0\forall x\\\left|x+3\right|\ge0\forall x\\\left|x+5\right|\ge0\forall x\end{matrix}\right.\\ \Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\forall x\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\\ \Leftrightarrow x+1+x+3+x+5=7x\\ 3x+9=7x\\ 4x=9\\ x=\dfrac{9}{4}\)
Bài 3:
Để A nguyên thì \(\sqrt{x}-2-5⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{9;1;49\right\}\)
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)