Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a,b>0;a\ne b\)ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)
Áp dụng ta được:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)
\(=\sqrt{16}+\sqrt{64}=4+8=12\)
Ta có đpcm.
a) x = \(\sqrt{7}\)
b) x = + - căn 10
c) x = căn 14
d) x bằng 2 / căn 3
e) x = 1 / căn 8
f) x = 1 - căn 2 / 2
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=\sqrt{3}.\left(2+3-1\right)=4\sqrt{3}\)
Ta có: \(\sqrt{12}+\sqrt{27}-\sqrt{3}\)
= \(\sqrt{4}.\sqrt{3}+\sqrt{9}.\sqrt{3}-\sqrt{3}\)
= \(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\)
= \(\sqrt{3}\left(2+3-1\right)=4.\sqrt{3}\)