K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

a, \(\sqrt{9x-9}-2\sqrt{x-1}=8\)ĐK : x >= 1 

\(\Leftrightarrow3\sqrt{x-1}-2\sqrt{x-1}=8\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\Leftrightarrow x=65\)

b, mình chưa hiểu đề lắm 

16 tháng 8 2021

\(\sqrt{x^2-6x+9}=5\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\)

\(\Leftrightarrow\left|x-3\right|=5\)

\(\Rightarrow\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\)

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

6 tháng 7 2016

\(9x^2-6x+2=\left(3x-1\right)^2+1=t\ge1\)

\(Pt\Rightarrow\sqrt{t}+\sqrt{5t-1}=\sqrt{10-t}\)

\(\Leftrightarrow5t-1=10-t+t-2\sqrt{t\left(10t-1\right)}\)

\(\Leftrightarrow2\sqrt{t\left(10t-1\right)}+5t=11\)

\(\Rightarrow VT\ge VP\left(t\ge1\right)\Rightarrow t=1\Rightarrow x=\frac{1}{3}\)

7 tháng 10 2021
a. 6x³-9x²

Đk: `x >=-1`.

`5sqrt(x+1) + sqrt(4x+4) - sqrt(9x+9) = 2`.

`<=> 5sqrt(x+1) + 2 sqrt(x+1) - 3sqrt(x+1) = 2`.

`<=> 4 sqrt(x+1) =2.`

`<=> sqrt(x+1) = 1/2`

`<=> x + 1 = 1/4`

`<=> x = 3/4 (tm)`.

Vậy `x = 3/4`.

20 tháng 7 2023

\(5\sqrt{x+1}+\sqrt{4x+4}-\sqrt{9x+9}=2\)

\(\Leftrightarrow5\sqrt{x+1}+2\sqrt{x+1}-3\sqrt{x+1}=2\)  (1)

ĐKXĐ: \(x\ge-1\)

(1) \(\Leftrightarrow4\sqrt{x+1}=2\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{1}{2}\)

\(\Leftrightarrow x+1=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{1}{4}-1\)

\(\Leftrightarrow x=-\dfrac{3}{4}\) (nhận)

Vậy \(x=-\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
ĐKXĐ: $9x^2+6x+1\geq 0$

$\Leftrightarrow (3x+1)^2\geq 0$

$\Leftrightarrow x\in\mathbb{R}$
--------------------------

$\sqrt{9x^2+6x+1}=2-x$

\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ 9x^2+6x+1=(2-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 9x^2+6x+1=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 8x^2+10x-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ (4x-1)(2x+3)=0\end{matrix}\right.\Leftrightarrow x=\frac{1}{4}\) hoặc $x=\frac{-3}{2}$