K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

`sqrt{8-4sqrt3}-sqrt{14+8sqrt3}`

`=sqrt{2(4-2sqrt3)}-sqrt{2(7+4sqrt3)}`

`=sqrt{2(3-2sqrt3+1)}-sqrt{2(4+2.2.sqrt3+3)}`

`=sqrt{2(sqrt3-1)^2}-sqrt{2(2+sqrt3)^2}`

`=sqrt2(sqrt3-1)-sqrt2(2+sqrt3)`

`=sqrt6-sqrt2-2sqrt2-sqrt6`

`=-3sqrt2`

18 tháng 7 2021

undefined

a) Ta có: \(\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{5}-\sqrt{3}\)

c) Ta có: \(\sqrt{11-2\sqrt{30}}\)

\(=\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{6}-\sqrt{5}\right|\)

\(=\sqrt{6}-\sqrt{5}\)

d) Ta có: \(\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{12-2\cdot\sqrt{12}\cdot1+1}\)

\(=\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|2\sqrt{3}-1\right|\)

\(=2\sqrt{3}-1\)

g) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

21 tháng 9 2020

\(G=\sqrt{8\sqrt{3}-4\sqrt{6}-4\sqrt{2}+18}-\sqrt{14-4\sqrt{6}}\)

\(G=\sqrt{12+4+2-4\sqrt{6}+8\sqrt{3}-4\sqrt{2}}-\sqrt{12+4-4\sqrt{6}}\)

\(G=\left(2\sqrt{3}+2-\sqrt{2}\right)-\left(2\sqrt{3}-2\right)=4-\sqrt{2}\)

18 tháng 7 2021

`sqrt{3-sqrt5}-sqrt{3+sqrt5}`

`=sqrt{(6-2sqrt5)/2}-sqrt{(6+2sqrt5)/2}`

`=sqrt{(sqrt5-1)^2/2}-sqrt{(sqrt5+1)^2/2}`

`=(sqrt5-1)/sqrt2-(sqrt5+1)/sqrt2`

`=(sqrt5-1-sqrt5-1)/sqrt2`

`=(-2)/sqrt2=-sqrt2`

18 tháng 7 2021

Cảm ơn nha :^

\(=\sqrt{5}-\sqrt{3}+\sqrt{5}-2=2\sqrt{5}-2-\sqrt{3}\)

20 tháng 1 2022

2 mũ 48-2 căn 15      +  3

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+2\right)}{2+\sqrt{2}+\sqrt{3}}\)

=1+căn 2

27 tháng 7 2023

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{3}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)+\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)